1. Roosa K, Lee Y, Luo R, Kirpich A, Rothenberg R, Hyman JM, Yan P et al. Short-term forecasts of the COVID-19 epidemic in Guangdong and Zhejiang, China: February 13–23, 2020. J Clin Med. 2020;9(2):596. doi:10.3390/jcm9020596
2. Stübinger J, Schneider L Epidemiology of coronavirus COVID-19: forecasting the future incidence in different countries. Healthcare. 2020;8(2):99. doi:10.3390/healthcare8020099
3. Huang Y, Yang L, Dai H, Tian F, Chen K. Epidemic situation and forecasting of COVID-19 in and outside China. Bulletin of the World Health Organization. [Published online 16 March 2020]. doi:10.2471/BLT.20.255158
4. Sun D, Duan L, Xiong J, Wang D Modelling and forecasting the spread tendency of the COVID-19 in China. BMC Infectious Diseases. [Published online 8 May 2020]. doi:10.21203/rs.3.rs-26772/v1
5. Avila E, Canto FJA Fitting parameters of SEIR and SIRD models of COVID-19 pandemic in Mexico. [Published online 15 April 2020]. [Electronic resource]. URL: https://www.researchgate.net/publication/341165247_Fitting_parameters_of_SEIR_and_SIRD_models_of_COVID-19_pandemic_in_Mexico#fullTextFileContent
6. Prem K, Liu Y, Russell TW, Kucharski AJ, Eggo RM, Davies N et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. Lancet Public Health 2020;5(5):e261–270. doi:10.1016/S2468-2667(20)30073-6
7. Benvenuto D, Giovanetti M, Vassallo L, Angeletti S, Ciccozzi M Application of the ARIMA model on the COVID-2019 epidemic dataset. Data Brief. 2020:1053403. [Ahead of print, published online 26 February 2020]. doi:10.1016/j.dib.2020.105340
8. Dehesh T, Mardani-Fard HA, Dehesh P Forecasting of COVID-19 Confirmed Cases in Different Countries with ARIMA Models. MedRxiv. [Published online 18 March 2020]. doi:10.1101/2020.03.13.20035345
9. Yonar H, Yonar A, Tekindal MA, Tekindal M. Modeling and forecasting for the number of cases of the COVID-19 pandemic with the curve estimation models, the Box-Jenkins and exponential smoothing methods. Euras J Med Oncol. 2020;4(2):160–165. doi:10.14744/ejmo.2020.28273
10. Ribeiro MHDM, Gomes da Silva R, Mariani VC, Coelho Ld S. Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil. Chaos, Solitons and Fractals. 2020;135: 109853. doi:10.1016/j.chaos.2020.109853
11. Zhang Z, Wang X, Gong H, Liu X, Chen H, Chu Z et al. Daily tracking and forecasting of the global COVID-19 pandemic trend using holt–winters exponential smoothing. Lancet. [Published online 15 April 2020]. https://dx.doi.org/10.2139/ssrn.3564413
12. Abdulmajeed K, Adeleke M, Popoola L. Online forecasting of COVID-19 cases in Nigeria using limited data. Data Brief. 2020;30:105683. doi:10.1016/j.dib.2020.105683
13. Elmousalami HH, Hassanien AE. Day level forecasting for coronavirus disease (COVID-19) spread: analysis, modeling and recommendations. [Published online 15 March 2020]. [Electronic resource]. URL: https://arxiv.org/ftp/arxiv/papers/2003/2003.07778.pdf
14. Petropoulos F, Makridakis S Forecasting the novel coronavirus COVID-19. PLoS ONE 15(3):e0231236. doi:10.1371/journal.pone.0231236
15. Zagidullin N, Motloch LJ, Gareeva D, Hamitova A, Lakman I, Krioni I et al. Combining novel biomarkers for risk stratification of two-year cardiovascular mortality in patients with ST-elevation myocardial infarction. J Clin Med. 2020;9(2):550. doi:10.3390/jcm9020550