Статья

Reduced SIR Model of COVID-19 Pandemic

S. Vinitsky, A. Gusev, V. Derbov, P. Krassovitskiy, F. Pen’kov, G. Chuluunbaatar,
2021

Abstract: We propose a mathematical model of COVID-19 pandemic preserving an optimal balance between the adequate description of a pandemic by SIR model and simplicity of practical estimates. As base model equations, we derive two-parameter nonlinear first-order ordinary differential equations with retarded time argument, applicable to any community (country, city, etc.).The presented examples of modeling the pandemic development depending on two parameters: the time of possible dissemination of infection by one virus carrier and the probability of contamination of a healthy population member in a contact with an infected one per unit time, e.g., a day, is in qualitative agreement with the dynamics of COVID-19 pandemic. The proposed model is compared with the SIR model.

Цитирование

Похожие публикации

Документы

Источник

Версии

  • 1. Version of Record от 2021-03-01

Метаданные

Об авторах
  • S. Vinitsky
    Joint Institute for Nuclear Research, Dubna, RUDN University
  • A. Gusev
    Joint Institute for Nuclear Research, Dubna
  • V. Derbov
    SSU
  • P. Krassovitskiy
    INP
  • F. Pen’kov
    Al Farabi Kazakh National University
  • G. Chuluunbaatar
    Joint Institute for Nuclear Research, Dubna, RUDN University
Название журнала
  • Computational Mathematics and Mathematical Physics
Том
  • 61
Выпуск
  • 3
Страницы
  • 376-387
Финансирующая организация
  • Russian Foundation for Basic Research
Номер гранта
  • 20-51-44001
Тип документа
  • journal article
Тип лицензии Creative Commons
  • CC BY
Правовой статус документа
  • Свободная лицензия
Источник
  • scopus