Статья

Room for doubt as a way to improve the accuracy of machine learning algorithms

A. Kornaev, E. Kornaeva,
2020

The decision-making process in diagnostics can be mitigated if an abstinence option is provided in a machine learning algorithm. This option may reduce false prediction possibility. Design of such an algorithm is associated with two difficulties: How to train a program to have some doubts and how to overcome those doubts? This paper deals with pneumonia detection task using a chest X-ray images dataset. Cropping an image into fragments, then classification of these cropped images into "normal", "pneumonia"and "abstain"classes, and then making a general diagnosis based on partial diagnosis for all image fragments allow accuracy improvement compared to the diagnosis of the whole image classified into the "normal"and "pneumonia"classes.

Цитирование

Похожие публикации

Источник

Версии

  • 1. Version of Record от 2020-09-01

Метаданные

Об авторах
  • A. Kornaev
    Orel State University
  • E. Kornaeva
    Orel State University
Название журнала
  • Conference Proceedings - 4th Scientific School on Dynamics of Complex Networks and their Application in Intellectual Robotics, DCNAIR 2020
Страницы
  • 135-137
Финансирующая организация
  • Council on grants of the President of the Russian Federation
Номер гранта
  • MD-129.2020.8
Тип документа
  • journal article
Тип лицензии Creative Commons
  • CC BY
Правовой статус документа
  • Свободная лицензия
Источник
  • scopus