Статья

A robust algorithm for explaining unreliable machine learning survival models using the Kolmogorov–Smirnov bounds

M. Kovalev, L. Utkin,
2021

A new robust algorithm based on the explanation method SurvLIME called SurvLIME-KS is proposed for explaining machine learning survival models. The algorithm is developed to ensure robustness to cases of a small amount of training data or outliers of survival data. The first idea behind SurvLIME-KS is to apply the Cox proportional hazards model to approximate the black-box survival model at the local area around a test example due to the linear relationship of covariates in the model. The second idea is to incorporate the well-known Kolmogorov–Smirnov bounds for constructing sets of predicted cumulative hazard functions. As a result, the robust maximin strategy is used, which aims to minimize the average distance between cumulative hazard functions of the explained black-box model and of the approximating Cox model, and to maximize the distance over all cumulative hazard functions in the interval produced by the Kolmogorov–Smirnov bounds. The maximin optimization problem is reduced to the quadratic program. Various numerical experiments with synthetic and real datasets demonstrate the SurvLIME-KS efficiency. © 2020 Elsevier Ltd

Цитирование

Похожие публикации

Документы

Источник

Версии

  • 1. Version of Record от 2021-04-27

Метаданные

Об авторах
  • M. Kovalev
    Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
  • L. Utkin
Название журнала
  • Neural Networks
Том
  • 132
Страницы
  • 1-18
Ключевые слова
  • Computational complexity; Learning algorithms; Quadratic programming; Cox proportional hazards models; Cumulative hazard function; Linear relationships; Numerical experiments; Optimization problems; Quadratic programs; Robust algorithm; Unreliable machine; Machine learning; algorithm; article; machine learning; sensitivity analysis; human; machine learning; nonparametric test; proportional hazards model; survival rate; Algorithms; Humans; Machine Learning; Proportional Hazards Models; Statistics, Nonparametric; Survival Rate
Издатель
  • Elsevier Ltd
Тип документа
  • journal article
Тип лицензии Creative Commons
  • CC
Правовой статус документа
  • Свободная лицензия
Источник
  • scopus