В связи с широким применением генно-инженерных биологических препаратов (ГИБП) в лечении иммуноопосредованных воспалительных заболеваний остро встает вопрос о дальнейшей терапевтической тактике ведения таких пациентов с учетом тяжелой эпидемиологической обстановки, вызванной пандемией нового коронавируса SARS-CoV-2. В обзоре собраны актуальные данные о патогенезе COVID-19 с развитием острого респираторного дистресс-синдрома, обусловленного синдромом высвобождения цитокинов («цитокиновый шторм»). Рассматриваются влияние ГИБП на патогенез COVID-19 и их роль в лечении тяжелых форм COVID-19. В обзоре отражены последние рекомендации международных ассоциаций/консенсусов и наблюдения врачей различных специальностей по вопросу прерывания/продолжения терапии ГИБП с оценкой последствий в случае прерывания биологической терапии.
1. Lebwohl M, Rivera-Oyola R, Murrell DF. Should biologics for psoriasis be interrupted in the era of COVID-19? J Am Acad Dermatol. 2020;82(5):1217-1218. doi: 10.1016/j.jaad.2020.03.031.
2. Singh JA, Wells GA, Christensen R, et al. Adverse effects of biologics: a network meta-analysis and Cochrane overview. Cochrane Database Syst Rev. 2011;2011(2):CD008794. doi: 10.1002/14651858.CD008794.pub2.
3. Hoshi D, Nakajima A, Inoue E, et al. Incidence of serious respiratory infections in patients with rheumatoid arthritis treated with tocilizumab. Mod Rheumatol. 2012;22(1):122-127. doi: 10.1007/s10165-011-0488-6.
4. Pawar A, Desai RJ, Solomon DH, et al. Risk of serious infections in tocilizumab versus other biologic drugs in patients with rheumatoid arthritis: a multidatabase cohort study. Ann Rheum Dis. 2019;78(4):456-464. doi: 10.1136/annrheumdis-2018-214367.
5. Van Vollenhoven RF, Emery P, Bingham CO, et al. Longterm safety of patients receiving rituximab in rheumatoid arthritis clinical trials. J Rheumatol. 2010;37(3):558-567. doi: 10.3899/jrheum.090856.
6. Papp KA, Griffiths CE, Gordon K, et al. Long-term safety of ustekinumab in patients with moderate-to-severe psoriasis: final results from 5 years of follow-up. Br J Dermatol. 2013;168(4): 844-854. doi: 10.1111/bjd.12214.
7. Frieder J, Kivelevitch D, Menter A, et al. Secukinumab: a review of the anti-IL-17A biologic for the treatment of psoriasis. Ther Adv Chronic Dis. 2018;9(1):5-21. doi: 10.1177/2040622317738910.
8. Jaillette E, Girault C, Brunin G, et al. Biological therapies in the treatment of inflammatory disease and cancer: impact on pulmonary infection. Ann Intensive Care. 2016;6(Suppl 1):50. doi: 10.1186/s13613-016-0114-z.
9. Cascella M, Rajnik M, Cuomo A, et al. Features, evaluation and treatment coronavirus (COVID-19) [updated 2020 Mar 20]. Treasure Island (FL): StatPearls Publishing; 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK554776/.
10. Monteleone G, Sarzi-Puttini PC, Ardizzone S. Preventing COVID-19-induced pneumonia with anticytokine therapy. Lancet Rheumatol. 2020. doi: 10.1016/s2665-9913(20)30092-8.
11. Conforti C, Giuffrida R, Dianzani C, et al. COVID-19 and psoriasis: is it time to limit treatment with immunosuppressants? A call for action. Dermatol Ther. 2020. doi: 10.1111/dth.13298.
12. Bardazzi F, Loi C, Sacchelli L, Di Altobrando A. Biologic therapy for psoriasis during the COVID-19 outbreak is not a choice. J Dermatolog Treat. 2020;31(4):320-321. doi: 10.1080/09546634.2020.1749545.
13. De Wit E, van Doremalen N, Falzarano D, et al. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14:523-534. doi: 10.1038/nrmicro.2016.81.
14. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1-23. doi: 10.1007/978-1-4939-2438-7_1.
15. Li X, Geng M, Peng Y, et al. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020;10(2):102-108. doi: 10.1016/j.jpha.2020.03.001.
16. Lin L, Lu L, Cao W, Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection — a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect. 2020;9(1):727-732. doi: 10.1080/22221751.2020.1746199.
17. Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus — induced lung injury. Nat Med. 2005;11:875-879. doi: 10.1038/nm1267.
18. Rabi FA, Al Zoubi MS, Kasasbeh GA, et al. SARS-CoV-2 and coronavirus disease 2019: what we know so far. Pathogens. 2020;9(3):231. doi: 10.3390/pathogens9030231.
19. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Coronaviruses. Methods Mol Biol. 2015; 1282:1-23. doi: 10.1007/978-1-4939-2438-7_1.
20. Cheng H, Wang Y, Wang GQ. Organ protective effect of angiotensin converting enzyme 2 and its effect on the prognosis of COVID-19. J Med Virol. 2020. doi: 10.1002/jmv.25785.
21. Minodier L, Charrel RN, Ceccaldi P, et al. Prevalence of gastrointestinal symptoms in patients with influenza, clinical significance, and pathophysiology of human influenza viruses in faecal samples: what do we know? Virol J. 2015;12:215. doi: 10.1186/s12985-015-0448-4.
22. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5:562-569. doi: 10.1038/s41564-020-0688-y.
23. Cristiani L, Mancino E, Matera L, et al. Will children reveal their secret? The coronavirus dilemma. Eur Respir J. 2020; in press. doi: 10.1183/13993003.00749-2020.
24. Manjarrez-Zavala ME, Rosete-Olvera DP, Gutierrez-Gonzalez LH, et al. Pathogenesis of viral respiratory infection. Respiratory disease and infection — a new insight. Submitted: April 26th 2012. Reviewed: October 12th 2012. Published: February 6th 2013. doi: 10.5772/54287.
25. Totura AL, Baric RS. SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon. Curr Opin Virol. 2012;2(3):264-275. doi: 10.1016/j.coviro.2012.04.004.
26. Rokni M, Ghasemi V, Tavakoli Z. Immune responses and pathogenesis of SARS-CoV-2 during an outbreak in Iran: Comparison with SARS and MERS. Rev Med Virol. 2020. doi: 10.1002/rmv.2107.
27. Kollmann TR, Crabtree J, Rein-Weston A, et al. Neonatal innate TLR-mediated responses are distinct from those of adults. J Immunol. 2009;183:7150-7160.
28. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1-9. doi: 10.12932/AP-200220-0772.
29. Snijder EJ, van der Meer Y, Zevenhoven-Dobbe J, et al. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol. 2006;80:5927-5940. doi: 10.1128/JVI.02501-05.
30. Fung SY, Yuen KS, Ye ZW, et al. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses. Emer Microb Inf. 2020;(1): 558-570. doi: 10.1080/22221751.2020.1736644.
31. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020. doi: 10.1016/S0140-6736(20)30183-5.
32. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Resp Med. 2020. doi: 10.1016/S2213-2600(20)30076-X.
33. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39:529-539. doi: 10.1007/s00281-017-0629-x.
34. Zhou G, Zhao Q. Perspectives on therapeutic neutralizing antibodies against the Novel Coronavirus SARS-CoV-2. Int J Biol Sci. 2020;16(10):1718-1723. doi: 10.7150/ijbs.45123.
35. Liu WJ, Zhao M, Liu K, et al. T-cell immunity of SARS-CoV: Implications for vaccine development against MERS-CoV. Antiviral Res. 2017;137:82-92.
36. Mysliwska J, Trzonkowski P, Szmit E, et al. Immunomodulating effect of influenza vaccination in the elderly differing in health status. Exp Gerontol. 2004;39:1447-1458. doi: 10.1016/j.exger.2004.08.005.
37. Belz GT, Smith CM, Kleinert L, et al. Distinct migrating and nonmigrating dendritic cell populations are involved in MHC class I-restricted antigen presentation after lung infection with virus. Proc Natl Acad Sci USA. 2004;101(23):8670-8675. doi: 10.1073/pnas.0402644101.
38. Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol. 2020. doi: 10.1002/jmv.25685.
39. Liu L, Wei Q, Lin Q, et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight. 2019;4:e123158.
40. COVID-19 Science Report: Pathogenesis and Host Immune Response to SARS-CoV-2. Jointly Developed by: NUS Yong Loo Lin School of Medicine, Department of Microbiology and Immunology. Singapore Immunology Network (SIgN), A*STAR As; 2020.
41. Channappanavar R, Zhao J, Perlman S. T cell-mediated immune response to respiratory coronaviruses. Immunol Res. 2014; 59(1-3):118-128. doi: 10.1007/s12026-014-8534-z.
42. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleu-kin-6. BBA Mol Cell Res. 2011;1813(5):878-888. doi: 10.1016/j.bbamcr.2011.01.034.
43. Murthy H, Iqbal M, Chavez JC, Kharfan-Dabaja MA. Cytokine release syndrome: current perspectives. Immunotargets Ther. 2019; 8:43-52. doi: 10.2147/ITT.S202015.
44. Cokic VP, Mitrovic-Ajtic O, Beleslin-Cokic BB, et al. Proinflam-matory cytokine IL-6 and JAK-STAT signaling pathway in myeloproliferative neoplasms. Mediators Inflamm. 2015;2015:453020. doi: 10.1155/2015/453020.
45. FDA approves tisagenlecleucel for B-cell ALL and tocilizumab for cytokine release syndrome. FDA [WWW Document]. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-tisagenlecleucel-b-cell-all-and-tocilizumab-cytokine-release-syndrome.
46. Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124(2):188-195. doi: 10.1182/blood-2014-05-552729.
47. Feldmann M, et al. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet. 2020. doi: 10.1016/S0140-6736(20)30858-8.
48. Das R, Guan P, Sprague L, et al. Janus kinase inhibition lessens inflammation and ameliorates disease in murine models of hemophagocytic lymphohistiocytosis. Blood. 2016;127(13): 1666-1675. doi: 10.1182/blood-2015-12-684399.
49. Huarte E, O'Connor RS, et al. Prophylactic Itacitinib (INCB039110) for the prevention of cytokine release syndrome induced by chimeric antigen receptor T-Cells (CAR-T-cells) therapy. Blood. 2019;134 (Suppl 1):1934. doi: 10.1182/blood-2019-128288.
50. Hotez P, Bottazzi ME, Corry D. The potential role of Th17 immune responses in coronavirus immunopathology and vaccine-induced immune enhancement. Preprints. 2020;2020040159.
51. Zhang Y, Li J, Zhan Y, et al. Analysis of serum cytokines in patients with severe acute respiratory syndrome. Infect Immun. 2004;72(8):4410-4415. doi: 10.1128/IAI.72.8.4410-4415.2004.
52. Cheung PF, Wong CK, Lam CW. Molecular mechanisms of cytokine and chemokine release from eosinophils activated by IL-17A, IL-17F, and IL-23: implication for Th17 lymphocytesmediated allergic inflammation. J Immunol. 2008;180:5625-5635.
53. Wu D, Yang XO. Th17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. J Microbiol Immunol Infect. 2020;53(3):368-370. doi: 10.1016/j.jmii.2020.03.005.
54. Murdock BJ, Falkowski NR, Shreiner AB, et al. Interleukin-17 drives pulmonary eosinophilia following repeated exposure to Aspergillus fumigatus conidia. Infect Immun. 2012;80(4): 1424-1436. doi: 10.1128/IAI.05529-11.
55. Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;e201017. doi: 10.1001/jamacardio.2020.1017.
56. Myers JM, Cooper LT, Kem DC, et al. Cunningham MW. Cardiac myosin-Th17 responses promote heart failure in human myocarditis. JCI Insight. 2016;1(9):e85851. doi: 10.1172/jci.insight.85851.
57. Zumla A, Hui DS, Azhar EI, et al. Reducing mortality from 2019-nCoV: host-directed therapies should be an option. Lancet. 2020;395(10224):e35-e36. doi: 10.1016/S0140-6736(20)30305-6.
58. Augustin M, von Kiedrowsky R, Korber A, et al. Recommendations for systemic therapy in persons with psoriasis during the pandemic phase of SARS-COV-2 (corona virus). PsoNet; 2020.
59. Stefferl A, Hopkins SJ, Rothwell NJ, Luheshi GN. The role of TNF-alpha in fever: opposing actions of human and murine TNF-alpha and interactions with IL-beta in the rat. Br J Pharmacol. 1996;118(8): 1919-1924. doi: 10.1111/j.1476-5381.1996.tb15625.x.
60. Serrato VA, Azevedo VF, Sabatoski V, et al. Influenza H1N1 infection in a patient with psoriatic arthritis in treatment with Adalimumab: a case report. Clin Rheumatol. 2013;32(S1):21-23.
61. Zingone F, Savarino EV. Viral screening before initiation of biologics in patients with inflammatory bowel disease during the COVID-19 outbreak. Lancet Gastroenterol Hepatol. 2020;5(6):525. doi: 10.1016/S2468-1253(20)30085-6.
62. Reich K, Ortonne JP, Gottlieb AB, et al. Successful treatment of moderate to severe plaque psoriasis with the PEGylated Fab' certolizumab pegol: results of a phase II randomized, placebo-controlled trial with a re-treatment extension. Br J Dermatol. 2012;167(1):180-190.
63. Ortonne JP, Taieb A, Ormerod AD, et al. Patients with moderate-to-severe psoriasis recapture clinical response during re-treatment with etanercept. Br J Dermatol. 2009;161(5):1190-1195.
64. Blauvelt A, Papp KA, Sofen H, et al. Continuous dosing versus interrupted therapy with ixekizumab: an integrated analysis of two phase 3 trials in psoriasis. J Eur Acad Dermatol Venereol. 2017;31(6):1004-1013. doi: 10.1111/jdv.14163.
65. American Academy of Dermatology. Guidance on the use of biologic agents during COVID-19 outbreak. [updated 2020 March 18] Available from: https://assets.ctfassets.net/1ny4yoiyrqia/PicgNuD0IpYd9MSOwab47/023ce3cf6eb82cb304b4ad4a8ef50d56/Biologics_and_COVID-19.pdf.
66. National Multiple Sclerosis Society website. Disease modifying treatment guidelines for coronavirus (COVID-19). [accessed 2020 April 11] Available from: nationalmssociety.org/What-you-need-to-know-about-Coronavirus-(COVID-19)/DMT-Guidelines-for-Coronavirus-(COVID-19)-and.
67. ECCO Crisis Task Force. 1st Interview COVID-19 ECCO Taskforce. [accessed: 2020 April 11] Available from: https://www.ecco-ibd.eu/images/6_Publication/6_8_Surveys/1st_interview_COVID-19%20ECCOTaskforce_published.pdf.
Адрес: 115114, Москва, ул. Летниковская, д. 4, стр.5, офис 2.4
тел.\факс: +7(499)754-99-94, доб. 502
e-mail: covid19@neicon.ru
Проект реализуется с использованием гранта Президента Российской Федерации на развитие гражданского общества, предоставленного Фондом президентских грантов.
Содержимое сайта, если не указано иное, опубликовано в соответствии с лицензией Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная (CC BY 4.0). Права на материалы, переданные партнерами проекта, принадлежат их правообладателям.
© 2025 NEICON