Эпидемия COVID-19, начавшаяся в декабре 2019 года в Китае, за несколько месяцев распространилась на все страны мира, приняв характер пандемии, число заболевших исчисляется миллионами. Механизмы патогенеза новой коронавирусной инфекции, вызванной неизвестным ранее вирусом SARS-CoV2, остаются недостаточно изученными. Для лечения COVID-19 применяют препараты разных групп, по мере появления опыта рекомендации регулярно пересматриваются. В условиях текущей пандемии важно предоставить специалистам актуальную информацию об эффективности и безопасности лечебных препаратов, применяемых для лечения пациентов с COVID-19, и о перспективных исследованиях в этой области. Цель обзора — критический анализ опубликованных результатов лечения COVID-19 с использованием различных групп препаратов для выбора наиболее перспективных лекарственных средств. Поиск источников провели по базам данных PubMed, Scopus, Cyberleninka, Clinical Trials, Cochrane Library и др., рассматривали преимущественно рандомизированные клинические исследования 2020 года, а также работы по изучению препаратов-претендентов. Материал статьи структурирован по механизму действия препаратов, содержит разделы противовирусной, иммуномодулирующей, антибактериальной терапии. В поиске новой перспективной мишени в лечении COVID-19 концентрировали внимание на матриксных металлопротеиназах (ММР), избыток которых ведет к разрушению внеклеточного матрикса, базальных мембран эпителия и эндотелия, способствует вторичному повреждению легочной ткани. В работе теоретически обосновали применение ингибиторов MMP на примере доксициклина, предложили протокол исследования для оценки эффективности нового подхода к лечению COVID-19. Заключение. Лекарственных средств с доказанной эффективностью в отношении COVID 19 в настоящее время нет. Препараты с разными механизмами действия применяются не по показаниям, часто в комбинациях, в этих условиях трудно избежать суммирования побочных эффектов с неблагоприятными последствиями для пациента. Применение препаратов с недоказанной эффективностью оправдано лишь в рамках клинических исследований с последующим анализом и публикацией результатов, чтобы в случае успеха с уверенностью рекомендовать их большинству пациентов с COVID-19. Ключевые слова: COVID-19; противомалярийные средства; ингибиторы вирусных протеаз; противопаразитарные препараты; ингибиторы интерлейкинов; ингибиторы янус-киназ; интерфероны; плазма реконвалесцентов; кортикостероиды; прокальцитонин; антибиотики; новая мишень; матриксные металлопротеиназы, доксициклин.
1. Stollenwerk N., Harper R.W., Sandrock Ch.E. Bench-to-bedside review: Rare and common viral infections in the intensive care unit — linking pathophysiology to clinical presentation. Critical Care. 2008; 12 (4): 219. DOI: 10.1186/cc6917
2. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Временные методические рекомендации МЗ РФ. Версия 7 от 03.06.2020 https://static-0.rosminzdrav.ru/system/attachments/attaches/000/050/584/origi-nal/03062020_MR_COVID-19_v7.pdf
3. Alexander P.E., Debono V.B., Mammen M.J., Iorio A., Aryal K., Deng D., Brocard E., Alhazzani W. COVID-19 research has overall low methodological quality thus far: case in point for chloroquine/hydroxy-chloroquine. J Clin Epidemiol. 2020; 123: 120-126. PMID: 32330521 PMCID: PMC7194626 DOI: 10.1016/j.jclinepi.2020.04.016
4. U.S. National Library of Medicine. Clinical Trials.com https://clini-caltrials.gov/ct2/results/details?cond=COVID-19
5. Keyaerts E., Li S., Vijgen L., Rysman E., Verbeeck J., Van Ranst M., Maes P. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrobial agents and chemotherapy. 2009; 53 (8): 3416-3421. DOI: 10.1128/AAC.01509-08
6. Vincent M.J., Bergeron E., Benjannet S., Erickson B.R., Rollin P.E., Ksiazek Th.G., Seidah N.G., Nichol St.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology journal. 2005; 2 (1): 69. DOI: 10.1186/1743-422X-2-69
7. Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M., Shi Z., Hu Z., Zhong W. and Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell research. 2020; 30 (3): 269-271. DOI: 10.1038/s41422-020-0282-0
8. Delvecchio R., Higa L.M., Pezzuto P, Valadao A.L., Garcez PP, Monteiro F.L., Loiola E.C., Dias A.A., Silva F.J.M., Aliota M.T., Caine E.A., Osorio J.E., Bellio M., O’Connor D.H., Rehen S., de Aguiar R.S., Savarino A., Campanati L., Tanuri A. Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models. Viruses. 2016; 8 (12): 322. DOI: 10.3390/v8120322. PMID: 27916837
9. te Velthuis A.J.W., van den Worm S.H.E., Sims A.C., Baric R.S., Snijder E.J., van Hemert M.J. Zn2+ Inhibits Coronavirus and Arterivirus RNA Polymerase Activity In Vitro and Zinc Ionophores Block the Replication of These Viruses in Cell Culture. PLoS Pathog. 2010; 6 (11): e1001176. PMID: 32330521 PMCID: PMC7194626 DOI: 10.1016/j.jclinepi.2020.04.016
10. Gao J., Tian Zh., Yang X Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020; 14: 723. DOI: 10.5582/bst.2020.01047. PMID: http://www.ncbi.nlm.nih.gov/pubmed/32074550
11. Gautret P., Lagier J.-Ch., Parola Ph.,Hoang V.Th., Meddeb L., Mailhe M., DoudierB., CourjonJ., Giordanengo V, VieiraV.E.,DupontH.T., Honort S., Colson Ph., ChabriereE., La ScolaB., Rolain J.-M., BrouquiPh., Raoult D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020: 105949. DOI: 10.1016/j.ijantimicag.2020.105949. PMID: http://www.ncbi.nlm.nih.gov/pubmed/32205204
12. Chu C.M., Cheng V.C.C., Hung I.F.N., Wong M.M.L., Chan K.H., Chan K.S., Kao R.Y.T., Poon L.L.M., C.L.P., Guan Y., Peiris J.S.M., Yuen K.Y., HKU/UCH SARS Study Group. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004; 59: 252-256. DOI: 10.1136/thorax.2003.012658
13. Chan K.S., Lai S.T., Chu C.M., Tsui E., Tam C.Y., Wong M.M.L., Tse M.W., Que T.L., Peiris J.S.M., Sung J., Wong V.C.W., Yuen K.Y. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong Med J. 2003; 9: 399-406. PMID: 14660806
14. Cao B., Wang Y., Wen D., Liu W., Wang J., Fan G., Ruan L., Song B., Cai Y., Wei M., Li X., Xia J., Chen N., Xiang J., Yu T., Bai T., Xie X., Zhang L., Li C., Yuan Y., Chen H., Li H., Huang H., Tu S., Gong F., Liu Y., Wei Y., Dong C., Zhou F., Gu X., Xu J., Liu Z., Zhang Y., Li H., Shang L., Wang K., Li K., Zhou X., Dong X., Qu Z., Lu S., Hu X., Ruan S., Luo S., Wu J., Peng L., Cheng F., Pan L., Zou J., Jia C., Wang J., Liu X., Wang S., Wu X., Ge Q., He J., Zhan H., Qiu F., Guo L., Huang C., Jaki T., Hayden F.G., Horby PW, ZhangD., Wang C. A Trial of Lopinavir-Ritonavir in adults hospitalized with severe COVID-19. N Engl J Med. 2020; 382: 17871799. DOI: 10.1056/NEJMoa2001282. PMID: 32187464
15. Cai Q., Huang D., Ou P., Yu H., Zhu Zh., Xia Zh., Su Y., Ma Zh., Zhang Y., Li Zh., He Q., Liu L., Fu Y., Chen J. COVID-19 in a designated infectious diseases hospital outside Hubei Province, China. MedRxiv. 2020; DOI: 10.1101/2020.02.17.20024018. PMID: 32239761
16. HuL., Chen S., Fu Y., GaoZ., LongH., RenH.-W.,Zuo Y., LiH., Wang J., Xu Q.-B., Yu W.-X., Liu J., Shao Ch., Hao J.-J., Wang Ch.-Zh., Ma Y., Wang Zh., Yanagihara R. J.-M. Wang, Deng Y. Risk factors associated with clinical outcomes in 323 COVID-19 patients in Wuhan, China. medRxiv 2020 DOI: 10.1101/2020.03.25.20037721. PMID: 32361738
17. Yan D., Liu X.-Y., Zhu Y.-N, Huang L., Dan B.-T., Zhang G.-J., Gao Y.-H. Factors associated with prolonged viral shedding and impact of Lopinavir/Ritonavir treatment in patients with SARS-CoV-2. Eur Respir J. 2020; 56: 2000799. DOI: 10.1183/13993003.00799-2020
18. Cai Q., Yang M,. Liu D,. Chen J,. Shu D., Xia J., Liao X., Gu Y., Cai Q., Yang Y., Shen C., Li X., Peng L., Huang D., Zhang J., Zhang S., Wang F., Liu J., Chen L., Chen S., Wang Z., Zhang Z., Cao R., Zhong W., Liu Y., Liu L. Experimental treatment with favipiravir for COVID-19: An open-label control study. Engineering. 2020; DOI: 10.1016/j.eng.2020.03.007
19. de Wit E., Feldmann F., Cronin J., Jordan R., Okumura A., Thomas T., Scott D., Cihlar T., Feldmann H. Prophylactic and therapeutic remde-sivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Nat Acad Sci USA. 2020; 117 (12): 6771-6776. DOI: 10.1073/pnas.1922083117. PMID: 32054787
20. Beigel John H., Tomashek Kay M., Dodd Lori E., Mehta Aneesh K., Zingman Barry S., Kalil Andre C., Hohmann Elizabeth, Chu Helen Y., Luetkemeyer Annie, Kline Susan, Lopez de Castilla Diego, Finberg Robert W., Dierberg Kerry, Tapson Victor, Hsieh Lanny, Patterson Thomas F., Paredes Roger, Sweeney Daniel A., Short William R., Touloumi Giota, Lye David Chien, Ohmagari Norio, Oh Myoung-don, Ruiz-Palacios Guillermo M., Benfield Thomas, Fatkenheuer Gerd, Kortepeter Mark G., Atmar Robert L., Creech C. Buddy, Lundgren Jens, Babiker Abdel G., Pett Sarah, Neaton James D., Burgess Timothy H., Bonnett Tyler, Green Michelle, Makowski Mat, Osinusi Anu, Nayak Seema, Lane H. Clifford. Remdesivir for 5 or 10 Days in Patients with Severe Covid-19. N Engl J Med. 2020. DOI: 10.1056/NEJMoa2015301.
21. Mair-Jenkins J., Saavedra-Campos M., Baillie J.K., Cleary P., Khaw F.-M., Lim W.Sh., Makki S., Rooney K.D., Nguyen-Van-Tam J.S., Beck Ch.R. Convalescent Plasma Study Group. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis. 2015; 211 (1): 80-90. DOI: 10.1093/infdis/jiu396. PMID: 25030060
22. Shen Ch., Wang Zh., Zhao F., Yang Y., Li J., Yuan J., Wang F., Li D., Yang M., Xing L., Wei J., Xiao H., Yang Y., Qu J., Qing L., Chen L., Xu Zh., Peng L., Li Y., Zheng H., Chen F., Huang K., Jiang Y., Liu D., Zhang Zh., Liu Y., Liu L. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA. 2020; 323 (16): 1582-1589. DOI: 10.1001/jama.2020.4783. PMID: 32219428
23. Duan K., Liu B., Li C., Zhang H., Yu T., Qu., Zhou M., Chen L., Meng Sh., Hu Y., Peng Ch., Yuan M., Huang J., Wang Z., Yu J., Gao., Wang D., Yu X., Li L., Zhang J., Wu X., Li B., Xu Y., Chen W., Peng Y., Hu Y., Lin L., Liu X., Huang Sh., Zhou Zh., Zhang L., Wang Y., Zhang Zh., Deng K., Xia Zh., Gong Q., Zhang W., Zheng X., Liu Y., Yang H., Zhou D., Yu D., Hou J., Shi Zh., Chen S., Chen Zh., Zhang X., Yang X. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. PNAS. 2020; 117 (17): 9490-9496; first published April 6, 2020. DOI: 10.1073/pnas.2004168117. PMID: 32253318
24. Pandey S., Vyas G.N. Adverse effects of plasma transfusion. Transfusion. 2012; 52 (Suppl. 1): 65S-79S. DOI: 10.1111/j.1537-2995.2012.03663.x
25. Caly L., Druce J.D., Catton M.G., Jans D.A., Wagstaff K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research. June 2020; 178: 104787. DOI: 10.1016/j.an-tiviral.2020.104787. PMID: 32251768
26. Rossignol J.-F. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. Journal of Infection and Public Health., 2016; 9 (3): 227-230. DOI: 10.1016/j.jiph.2016.04.001
27. Sisk J.M., Frieman M.B., Machamer C.E. Coronavirus S protein-induced fusion is blocked prior to hemifusion by Abl kinase inhibitors. J Gen Virol. 2018; 99 (5): 619-630. DOI: 10.1099/jgv.0.001047. PMID: 29557770
28. Alhazzani W, M0ller M.H., Arabi Y.M., Loeb M., Gong M.Ng, Fan E., Oczkowski S., Levy M.M., Derde L., Dzierba A., Du B., Aboodi M., Wun-sch H., Cecconi M., Koh Y., Chertow D.S., Maitland K., Alshamsi F., Bel-ley-Cote E., Greco M., Laundy M., Morgan J.S., Kesecioglu J., McGeer A., Mermel L., Mammen M.J., Alexander P.E., Arrington A., Centofanti J.E., Citerio G., Baw B., Memish Z.A., Hammond N., Hayden F.G., Evans L., Rhodes A. Surviving Sepsis Campaign. Guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Critical Care Medicine.2020; 48 (6): e440-e469 Volume Online First — Issue — DOI: 10.1097/CCM.0000000000004363. PMID: 32222812
29. Isidori, A.M., Arnaldi, G., Boscaro, Falorni M. A., Giordano C., Giordano R., Pivonello R., Pofi R., Hasenmajer V., Venneri M. A., Sbardella E., Sime-oli C., Scaroni C., Lenziet A. COVID-19 infection and glucocorticoids: update from the Italian Society of Endocrinology Expert Opinion on steroid replacement in adrenal insufficiency. Journal of Endocrinolog-icalInvestigation. (43): 1141-1147 DOI: 10.1007/s40618-020-01266-w
30. Arabi Y.M., Mandourah Y., Al-Hameed F., Sindi A.A., Almekhlafi G.A., Hussein M.A., Jose J., Pinto R., Al-Omari A., Kharaba A., Almotairi A., Al Khatib K., Alraddadi B., Shalhoub S., Abdulmomen A., Qushmaq I., Mady A., Solaiman O., Al-Aithan A.M., Al-Raddadi R., Ragab A., Balkhy H.H., Al Harthy A., Deeb A.M., Al Mutairi H., Al-Dawood A., Merson L., Hayden F.G., Fowler R.A., Saudi Critical Care Trial Group. Corticosteroid therapy for critically ill patients with middle east respiratory syndrome. Am J Respir. Crit Care Med. 2018; 197: 757-767. DOI: 10.1164/rccm.201706-1172OC. PMID: 29161116
31. Lee N., Chan K.C.A., Hui D.S., Ng E.K.O., Wu A., Chiu R.W.K., Wong V.W.S., Chan P.K.S., Wong K.T., Wong E., Cockram C.S., Tam J.S., Sung J.J.Y., Lo Y.. Effects of early corticosteroid treatment on plasma SARS-associated Coronavirus RNA concentrations in adult patients. J Clin Virol. 2004; 31: 304-309. DOI: 10.1016/j.jcv.2004.07.006.
32. Chen R.-Ch., TangX.-P, Tan Sh.-Y., LiangB.-L., Wan Zh.-Y., Fang J.-Q., Zhong N. Treatment of severe acute respiratory syndrome with glucosteroids. Chest Journal. 2006; 129 (6): 1441-1452. DOI: 10.1378/chest.129.6.1441. PMID: 16778260
33. Zha L., Li Sh., Pan L., Tefsen B., Li Y., French N., Chen L., Yang G., Villanueva E.V. Corticosteroid treatment of patients with coronavirus disease 2019 (COVID-19). Medical Journal of Australia. 2020; 212 (9): 416-420 DOI: 10.5694/mja2.50577. PMID: 32296987
34. Keskin O., Farzan N., Birben E., H.Akel, Karaaslan C., Maitland-van der Zee A.H., Wechsler M.E., Vijverberg S.J., Kalayci O. Genetic associations of the response to inhaled corticosteroids in asthma: a systematic review. Clin Transl Allergy. 2019; 9: 2. Published online 2019 Jan 9. DOI: 10.1186/s13601-018-0239-2. PMID: 30647901
35. Zhang X., Song K., Tong F., Fei M., Guo H., Lu Zh., Wang J., Zheng Ch. First case of COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood Advances. 2020; 4 (7): 1307-1310. DOI:10.1182/bloodadvances.2020001907. PMID: 32243501
36. Case Study: Treating COVID-19 in a Patient with Multiple Myeloma [news release]. Washington. Published April 3, 2020. hematology.org/newsroom/press-releases/2020/case-study-treat-ing-covid-19. Accessed April 7, 2020.
37. Jones G., Ding Ch. Tocilizumab: A Review of Its Safety and Efficacy in Rheumatoid Arthritis. Clin Med Insights Arthritis Musculoskelet Disord. 2010; 3: 81-89. DOI: 10.4137/CMAMD.S4864
38. Gritti G., Raimondi F., Ripamonti D., Riva I., Landi F., Alborghetti L., Frigeni M., Damiani M., Mico C., Fagiuoli S., Cosentini R., Lorini FL., Fabretti F., . Morgan J.H, Owens B.M.J., Kanhai K., Cowburn J., Rizzi M., Di Marco F., Rambaldi A. Use of siltuximab in patients with COVID-19 pneumonia requiring ventilatory support. medRxiv. preprint DOI: 10.1101/2020.04.01.20048561
39. Treatment of COVID-19 Patients With Anti-interleukin Drugs (COV-AID). ClinicalTrials.gov Identifier: NCT04330638. https://clinicaltri-als.gov/ct2/show/record/NCT04330638
40. Regeneron and sanofi provide update on u.s. phase 2/3 adaptive-designed trial of kevzara® (sarilumab) in hospitalized covid-19 patients. TARRYTOWN, N.Y. and PARIS, April 27, 2020 /PRNewswire/ — https://www.prnewswire.com/news-releases/regeneron-and-sanofi-pro-vide-update-on-us-phase-23-adaptive-designed-trial-of-kevzara-sar-ilumab-in-hospitalized-covid-19-patients-301047326.html
41. Cavalli G., De Luca G., Campochiaro C., Della-Torre E., Ripa M., Canetti D., Oltolini Ch., Castiglioni B., Din Ch.T., Boffini N., Tomelleri A., Farina N., Ruggeri A., Rovere-Querini P., Di Lucca G., Martinenghi S., Scotti R., Tresoldi M., Ciceri F., Landoni G., Zangrillo A., Scarpellini P., Dagna L. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020; 2 (6): e325-e331. Published Online May 7. DOI: 10.1016/S2665-9913(20)30127-2. PMID: 32501454
42. O’Shea J.J., Kontzias A., Yamaoka K., Tanaka Y., Laurence A. Janus kinase Inhibitors in autoimmune diseases. Ann Rheum Dis. Author manuscript; 2013; 72 (Suppl 2): ii111-5. DOI: 10.1136/annrheumdis-2012-202576. PMID: 23532440
43. Cantini F., Niccoli L., Matarrese D., Nicastri E., Stobbione P., Goletti D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J Infect. 2020; 81 (2): 318-356. PMID: 32333918 PMCID: PMC7177073 DOI: 10.1016/j.jinf.2020.04.017
44. Safety and Efficacy of Ruxolitinib for COVID-19. ClinicalTrials.gov Identifier: NCT04348071. https://clinicaltrials.gov/ct2/show/NCT04348071
45. Acalabrutinib Study With Best Supportive Care Versus Best Supportive Care in Subjects Hospitalized With COVID-19. CALAVI (Calquence Against the Virus) (ACE-ID-201). ClinicalTrials.gov Identifier: NCT04346199. https://clinicaltrials.gov/ct2/show/NCT04346199
46. TOFAcitinib in SARS-CoV2 Pneumonia. ClinicalTrials.gov Identifier: NCT04332042. https://clinicaltrials.gov/ct2/show/NCT04332042
47. Isaacs A., Lindenmann J. Virus interference. I. The interferon. Proc R Soc London Ser B. 1957; 147: 258-267. DOI: 10.1098/rspb.1957.0048
48. Charles E. Samuel. Antiviral Actions of Interferons. Clin Microbiol Rev. 2001; 14 (4): 778-809. DOI: 10.1128/CMR.14.4.778-809.2001
49. Sheahan TP, Sims A.C., Leist S.R., Schafer A., Won J., Brown A.J., Montgomery S.A., Hogg A., Babusis D., Clarke M.O., Spahn J.E., Bauer L., Sellers S., PorterD.,Feng J.Y., Cihlar T, JordanR.,DenisonM.R.,BaricR.S. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun., 2020; 11. 222. DOI: 10.1038/s41467-019-13940-6. PMID: 31924756
50. Omrani A.S., Saad M.M., Baig K., Bahloul A., Abdul-Matin M., Alaida-roos A.Y., Almakhlafi G.A., Albarrak M.M., Memish Z.A., Albarrak A.M. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect. Dis. 2014; 14: 1090-1095. DOI: 10.1016/S1473-3099(14)70920-X. PMID: 25278221
51. Arabi Y.M., Shalhoub S., Mandourah Y., Al-Hameed F., Al-Omari A., Al Qasim E., Jose J., Alraddadi B., Almotairi A., Al Khatib K., Abdulmomen A., Qushmaq I., Sindi A.A., Mady A., Solaiman O., Al-Raddadi R., Maghrabi K., Ragab A., Al Mekhlafi G.A., Balkhy H.H., Al Harthy A., Kharaba A., Gramish J.A., Al-Aithan A.M., Al-Dawood A., Merson L., Hayden F.G., Fowler R. Ribavirin and interferon therapy for critically ill patients with middle east respiratory syndrome: A multicenter observational study. Clin Infect Dis. 2020; 70 (9): 1837-1844. DOI: 10.1093/cid/ciz544. PMID: 31925415
52. National institutes of health. immune-based therapy under evaluation for treatment of COVID-19. Last Updated: May 12, 2020. https://www.covid19treatmentguidelines.nih.gov/immune-based-therapy/
53. Hung I.F.-N., Lung K.-Ch., Tso E.Y.-K., Liu R., Chung T.W.-H., Chu M.-Y., Ng Y.-Y., Lo J., Chan J., Tam A.R., Shum H.-P., Chan V., Wu A.K.-L., Sin K.-M., Leung W.-Sh., Law W.-L., Lung D.Ch., Sin S., YeungP, Yip C.Ch.-Y., Zhang R.R., Fung A.Y.-F., Yan E.Y.-W., Leung K.-H., Ip J.D., Chu A.W.-H., Chan W.-M., Ng A.Ch.-K., Lee R., Fung K., Yeung A., Wu T.-Ch., Chan J.W.-M., Yan W.-W., Chan W.-M., Chan J. F.-W., Lie A.K.-W., Tsang O.T.-Y., Cheng V.Ch.-Ch., Que T.-L., Lau Ch.-S., Chan K.-H., To K.K.-W., Yuen K.-Y. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet. 2020; 395 (10238): 1695-1704. DOI: 10.1016/S0140-6736(20)31042-4. PMID: 32401715
54. Mantlo E., Bukreyeva N., Maruyama J., Paessler S., Huang Ch. Antiviral activities of type I interferons to SARS-CoV-2 infection. Antiviral Res. 2020; 179: 104811. DOI: 10.1016/j.antiviral.2020.104811. PMID: 32360182
55. de Jong H.J.I., Kingwell E., Shirani A., Tervaert J.W.C., Hupperts R., Zhao Y., Zhu F., Evans Ch., van der Kop M.L., Traboulsee A., Gustafson P., Petkau J., Marrie R. A., Tremlett H., British Columbia Multiple Sclerosis Clinic Neurologists. Evaluating the safety of в-interferons in MS: a series of nested case-control studies. Neurology. 2017; 88 (24): 2310-2320. DOI: 10.1212/WNL.0000000000004037. PMID: 28500224
56. Hu Y., Ye Y., Ye L., Wang X., Yu H. Efficacy and safety of interferon alpha therapy in children with chronic hepatitis B. Medicine (Baltimore). 2019; 98 (32): e16683. DOI: 10.1097/MD.0000000000016683. PMID: 31393369
57. Open-label, Randomized Study of IFX-1 in Patients With Severe COVID-19 Pneumonia (PANAMO). ClinicalTrials.gov Identifier: NCT04333420. https://clinicaltrials.gov/ct2/show/NCT04333420
58. Golchin A., Seyedjafari E., Ardeshirylajimi A. Mesenchymal stem cell therapy for COVID-19: Present or Future. Stem Cell Rev Rep. 2020; Apr 13: 1-7. DOI: 10.1007/s12015-020-09973-w. PMID: 32281052
59. Website of the British society for antimicrobial therapy http://bsac.org.uk/
60. Website of National Institute for Health and Care Excellence [NICE] https://www.nice.org.uk/guidance
61. Qing Y., Wenyang J., Raoyao L. COVID-19 Patients with Gastrointestinal Symptoms Are More Likely to Develop into Severe Cases «Science and Technology Daily», 21.04.2020 https://gmcc.alibabadoctor.com/news/detail?content_id=1496ca6b1c270a6e8a38ddf92471d795
62. Белобородова Н.В. «Сепсис. Метаболомный подход». Монография. М.: Издательство Медицинское информационное агентство «МИА»; 2018. 272. ISBN: 978-5-9986-0350-1
63. Beloborodova N.V., Sarshor Yu.N., Bedova A.Yu., Chernevskaya E.A., Pautova A.K. Involvement of Aromatic Metabolites in the Pathogenesis of Septic Shock. SHOCK. 2018; 50 (3): 273-279. DOI: 10.1097/SHK.0000000000001064
64. Beloborodova N.V., Olenin A.Yu., Pautova A.K. Metabolomic findings in sepsis as a damage of host-microbial metabolism integration. J. of Crit. Care. 2018; 43: 246-255. DOI: 10.1016/j.jcrc.2017.09.014
65. Черневская Е.А., Белобородова Н.В. Микробиота кишечника при критических состояниях (обзор). Общая реаниматология. 2018. 14 (5): 96-119. DOI: 10.15360/1813-9779-2018-5-96-119
66. Beloborodova N.V., Grechko A.V., Olenin A.Yu. Chapter «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology» in Book «Infection and Sepsis» InTechOpen [online first]. DOI: 10.5772/intechopen.87176
67. Белобородова Н.В. Метаболизм микробиоты при критических состояниях (обзор и постулаты). Общая реаниматология. 2019; 15 (6), 62-79. DOI: 10.15360/1813-9779-2019-6-62-79
68. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Временные методические рекомендации МЗ РФ. Версия 3 (03.03.2020), раздел 4.5.1. Особенности клинических проявлений. https://www.garant.ru/products/ipo/prime/doc/73647088/
69. Carsana L., Sonzogni A., Nasr A., Rossi R., Pellegrinelli A., Zerbi P., Rech R., Colombo R., Antinori S., Corbellino M., Galli M., Catena E., Tosoni A., Gianatti A., Nebuloni M. Pulmonary post-mortem findings in a large series of COVID-19 cases from Northern Italy. COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv. DOI: 10.1101/2020.04.19.20054262
70. Зайратьянц О.В., СамсоноваМ.В., МихалеваЛ.М., Черняев А.Л., Мишнев О.Д., Крупнов Н.М. Патологическая анатомия легких при COVID-19: атлас. Москва; Рязань: Издательство ГУП РО «Рязанская областная типография», 2020. — 52 с., ил. 62
71. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Zh., Xiang J., Wang Y., Song B., Gu X., Guan L., Wei Y., Li H., Wu X., Xu J., Tu Sh., Zhang Y., Chen H., Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395: 1054-1062. DOI: 10.1016/S0140-6736(20)30566-3.
72. Self W.H., Balk R.A., Grijalva C.G., Williams D.J., Zhu Y., Anderson E.J., Waterer G.W., Courtney D.M., Bramley A.M., Trabue Ch., Fakhran Sh., Blaschke A.J., Jain S., Edwards K.M., Wunderink R.G. Procalcitonin as a marker of etiology in adults hospitalized with community-acquired pneumonia (multicenter study). Clin Infect Dis. 2017; 65 (2): 183-190. DOI: 10.1093/cid/cix317. PMID: 28407054
73. Grondman I., Pirvu A., Riza A., Ioana M., Mihai G., Netea M.G. Biomarkers of inflammation and the etiology of sepsis. Review Article. Biochemical Society Transactions. 2020; 48: 1-14. DOI: 10.1042/BST20190029.
74. Guan W.-J., Ni Z.-Y., Hu Y., Liang W.-H., Ou Ch.-Q., He J.-X., Liu L., Shan H., Lei Ch.-L., Hui D.S.C., Du B., Li L.-J., Zeng G., Yuen K.-Y., Chen R.-Ch., Tang Ch.-L., Wang T., Chen P.-Y., Xiang J., Li Sh.-Y., Wang J.-L., Liang Z.-J., Peng Y.-X., Wei L., Liu Y., Hu Y.-H., Peng P., Wang J.-M., Liu J.-Y., Chen Zh., Li G., Zheng Zh.-J., Qiu Sh.-Q., Luo J., Ye Ch.-J., Zhu Sh.-Y., Zhong N.-Sh., China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. New Engl J Med. 2020; 382 (18): 1708-1720. NEJM. org. DOI: 10.1056/NEJMoa2002032. PMID: 32109013
75. Lippi G., Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A Meta-analysis. Clinica Chimica Acta. 2020; 505: 190-191. DOI: 10.1016/j.cca.2020.03.004
76. Jereb M., Kotar T. Usefulness of procalcitonin to differentiate typical from atypical community-acquired pneumonia. Wien Klin Wochen-schr. 2006; Apr; 118 (5-6): 170-174. DOI: 10.1007/s00508-006-0563-8
77. COVID-19 rapid guideline: antibiotics for pneumonia in adults in hospital. National Institute for Health and Care Excellence (NICE). NICE guideline [NG173] Published date: 01 May 2020. https://www.nice.org.uk/guidance/ng173
78. Sorbera L.A., Graul A.I., Dulsat C. Taking aim at a fast-moving target: targets to watch for SARS-CoV-2 and COVID-19. Drugs of the Future. 2020; 45 (4): 1-6 (Advanced Publication). DOI: 10.1358/dof.2020.45.4.3150676
79. Bhattacharya S., Sen N., Yiming M.T., Patel R., Parthasarathi K., Quadri S., Issekutz A.C., Bhattacharya J. High tidal volume ventilation induces proinflammatory signaling in rat lung endothelium. Am J Respir Cell Mol Biol. 2003; 28: 218-224. DOI: 10.1165/rcmb.4763.
80. Ries C., Petrides P.E. Cytokine regulation of matrix metalloproteinase activity and its regulatory dysfunction in disease. Biol Chem Hoppe Seyler. 1995; 376 (6): 345-355. PMID: 7576228
81. Nagase H. Activation mechanisms of matrix metalloproteinases. Biol Chem. 1997; 378: 151-160. PMID: 9165065
82. Bode W., Maskos K. Structural basis of the matrix metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases. Review. Biol Chem. 2003; 384 (6): 863-872. DOI: 10.1515/BC.2003.097.
83. Castro M.M., Kandasamy A.D., Youssef N., Schulz R. Matrix Metalloproteinase Inhibitor Properties of Tetracyclines: Therapeutic Potential in Cardiovascular Diseases. Pharmacol Res. 2011; 64 (6): 551-560. Epub 2011 May 31. DOI: 10.1016/j.phrs.2011.05.005.
84. Acharya M.R., Venitz J., Figg W.D. Sparreboom A. Chemically modified tetracyclines as inhibitors of matrix metalloproteinases. Drug Resistance Updates.2004; 7 (3): 195-208. DOI: 10.1016/j.drup.2004.04.002
85. Steinberg J., Fink G., Picone A., Searles B., Schiller H., Lee H.M., Nieman G. Evidence of increased matrix metalloproteinase-9 concentration in patients following cardiopulmonary bypass. J Extra Corpor Tech-nol. 2001; 33: 218-222. PMID: 11806432
86. Lin T.C., Li C.Y., Tsai C.S., Ku C.H., Wu C.T., Wong C.S., Ho S.T. Neutrophil-mediated secretion and activation of matrix metalloproteinase-9 during cardiac surgery with cardiopulmonary bypass. Anesth Analg. 2005; 100 (6): 1554-1560. DOI: 10.1213/01.ANE.0000154307.92060.84
87. Joffs C., Gunasinghe H.R., Multani M.M., Dorman B.H., Kratz J.M., Crumbley A.J. 3rd, Crawford F.A. Jr., Spinale F.G. Cardiopulmonary bypass induces the synthesis and release of matrix metalloproteinases. Ann Thorac Surg. 2001; 71: 1518-1523. DOI: 10.1016/s0003-4975(01)02442-0
88. Zhang C., Gong W., Liu H., Guo Z., Ge S. Inhibition of matrix metalloproteinase-9 with low-dose doxycycline reduces acute lung injury induced by cardiopulmonary bypass. Int J Clin Exp Med. 2014; 7 (12): 4975-82. eCollection 2014. PMID: 25663995. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4307442/
89. Dalvi P.S., Singh A., Trivedi H.R., Ghanchi1 F.D., Parmar D.M., Mistry S.D. Effect of doxycycline in patients of moderate to severe chronic obstructive pulmonary disease with stable symptoms. Annals of Thoracic Medicine. 2011; 6 (4): 221-226. http: //www.thoracicmedicine.org. DOI: 10.4103/1817-1737.84777
90. Doroszko A., Hurst Th.S., Polewicz D., Sawicka J., J. Fert-Bober, D.H. Johnson, G. Sawicki. Effects of MMP-9 inhibition by doxycycline on proteome of lungs in high tidal volume mechanical ventilation-induced acute lung injury. Proteome Sci. 2010; 8: 3. Published online 2010 Jan 29. DOI: 10.1186/1477-5956-8-3. PMCID: PMC2824689 PMID: 20205825 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824689/
91. Sochor M., Richter S., Schmidt A., Hempel S., Hopt U.T., Keck T. Inhibition of Matrix Metalloproteinase-9 with Doxycycline Reduces Pancreatitis-Associated Lung Injury. Digestion. 2009; 80 (2): 65-73. DOI: 10.1159/000212080
92. Зырянов С.К., Голуб А.В., Козлов Р.С. Доксициклин в современной клинической практике. Клиническая микробиология и антимикробная химиотерапия. 2020; 22 (1): 21-28. DOI: 10.36488/cmac.2020.1.21-28
93. Wormser G.P., Dattwyler R.J., Shapiro E.D., Halperin J.J., Steere A.C., Klempner M.S., Krause P.J., Bakken J.S., Strle F., Stanek G., Bockenstedt L., Fish D., Dumler J.S., Nadelman R.B. The clinical assessment, treatment and prevention of Lyme disease, human granulocytic anaplas-mosis and babesiosis: clinical practice guidelines by the infectious diseases society of America. Clin Infect Dis. 2006; 43 (9): 1089-1134. DOI: 10.1086/508667
94. van Zuuren E.J., Kramer S., Carter B., Graber M.A., Fedorowicz Z. Interventions for rosacea. Cochrane Database Syst Rev. 2011; 3: CD003262. DOI: 10.1002/14651858.CD003262.pub4
95. MUllegger R.R., Glatz M. Skin manifestations of lime borreliosis: diagnosis and management. Am J Clin Dermatol. 2008; 9 (6): 355-368. DOI: 10.2165/0128071-200809060-00002
96. Torresani C., Pavesi A., Manara G.C. Clarithromycin versus doxycycline in the treatment of rosacea. Int J Dermatol. 1997; 36 (12): 938946. DOI: 10.1046/j.1365-4362.1997.00301.x
97. Heneghan С., Aronson J., Hobbs R., Mahtani K. Rapidly managing pneumonia in older people during a pandemic. The Centre for Evidence-Based Medicine (CEBM). Oxford COVID-19 Evidence Service Team. March 16, 2020 https://www.cebm.net/covid-19/rapidly-managing-pneumonia-in-older-people-during-a-pandemic/
98. Dalvi P. S, Singh A., Trivedi H. R, Ghanchi F. D, Parmar D.M, Mistry S.D. Effect of Doxycycline in Patients of Moderate to Severe Chronic Obstructive Pulmonary Disease With Stable Symptoms. Ann Thorac Med 2011; 6 (4): 221-226. DOI: 10.4103/1817-1737.84777
99. van der Waaij D. Colonization Resistance of the Digestive Tract — Mechanism and Clinical Consequences. Nahrung 1987; 31 (5-6): 507517 DOI: 10.1002/food.19870310551
100. Vollaard E.J., Clasener H.A..L, Van Griethuysen A.J.A., Janssen A.J.H.M., Sanders-Reimers A.H.J., Muller N.F., Huige P.J. Influence of cefaclor, phenethicillin, co-trimoxazole and doxycycline on colonization resistance in healthy volunteers. J Antimicrob Chemother. 1988; 22 (5): 747-758. DOI: 10.1093/jac/22.5.747.
101. Gorbach S.L., Barza M., Giuliano M., Jacobus N.V. Colonization resistance of the human intestinal microflora: testing the hypothesis in normal volunteers. Eur J Clin Microbiol Infect Dis. 1988; 7 (1): 98-102. DOI: 10.1007/BF0196219
102. Vollaard E.J., Clasener H.A., van Saene H.K., Muller N.F. Effect on colonization resistance: an important criterion in selecting antibiotics. Drug Intel. and Clin. Pharm. 1990; 24 (1): 60-66. DOI: 10.1177/106002809002400113
Адрес: 115114, Москва, ул. Летниковская, д. 4, стр.5, офис 2.4
тел.\факс: +7(499)754-99-94, доб. 502
e-mail: covid19@neicon.ru
Проект реализуется с использованием гранта Президента Российской Федерации на развитие гражданского общества, предоставленного Фондом президентских грантов.
Содержимое сайта, если не указано иное, опубликовано в соответствии с лицензией Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная (CC BY 4.0). Права на материалы, переданные партнерами проекта, принадлежат их правообладателям.
© 2025 NEICON