Статья

Numerically statistical investigation of the partly super-exponential growth rate in the COVID-19 pandemic (throughout the world)

G. Lotova, G. Mikhailov,
2020

A number of particles in a multiplying medium under rather general conditions is asymptotically exponential with respect to time t with the parameter λ, i.e., with the index of power λt. If the medium is random, then the parameter λ is the random variable. To estimate the temporal asymptotics of the mean particles number (via the medium realizations), it is possible to average the exponential function via the corresponding distribution. Assuming that this distribution is Gaussian, the super-exponential estimate of the mean particle number could be obtained and expressed by the exponent with the index of power tEλ + t2Dλ/2. The application of this new formula to investigation of the COVID-19 pandemic is performed.

Цитирование

Похожие публикации

Документы

Источник

Версии

  • 1. Version of Record от 2020-12-01

Метаданные

Об авторах
  • G. Lotova
    Siberian Branch, Russian Academy of Sciences, Novosibirsk State University
  • G. Mikhailov
    Siberian Branch, Russian Academy of Sciences, Novosibirsk State University
Название журнала
  • Journal of Inverse and Ill-Posed Problems
Том
  • 28
Выпуск
  • 6
Страницы
  • 877-879
Номер гранта
  • undefined
Тип документа
  • journal article
Тип лицензии Creative Commons
  • CC BY
Правовой статус документа
  • Свободная лицензия
Источник
  • scopus