1. Tyrrell D.A., Bynoe M.L. Cultivation of viruses from a high proportion of patients with colds. Lancet. 1966;1:76–7. DOI: 10.1016/s0140-6736(66)92364-6
2. Tyrrell D.A., Almeida J.D., Cunningham C.H., Dowdle W.R., Hofstad M.S., McIntosh K., et al. Coronaviridae. Intervirology. 1975;5(1–2):76–82. DOI: 10.1159/000149883
3. McIntosh K., Kapikian A.Z., Turner H.C., Hartley J.W., Parrott R.H., Chanock R.M. Seroepidemiologic studies of coronavirus infection in adults and children. Am J Epidemiol. 1970;91(6):585–92. DOI: 10.1093/oxfordjournals.aje.a121171
4. Peiris J.S., Lai S.T., Poon L.L., Guan Y., Yam L.Y., Lim W., et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361(9366):1319–25. DOI: 10.1016/s0140-6736(03)13077-2
5. Azhar E.I., Hui D.S.C., Memish Z.A., Drosten C., Zumla A. The Middle East Respiratory Syndome (MERS). Infect Dis Clin North Am. 2019;33(4):891–905. DOI: 10.1016/j.idc.2019.08.001
6. Hui D.S., Azhar E., Madani T.A., Ntoumi F., Kock R., Dar O., et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health — The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020;91:264–6. DOI: 10.1016/j.ijid.2020.01.009
7. Zhang C., Zheng W., Huang X., Bell E.W., Zhou X., Zhang Y. Protein Structure and Sequence Reanalysis of 2019-nCoV Genome Refutes Snakes as Its Intermediate Host and the Unique Similarity between Its Spike Protein Insertions and HIV-1. J Proteome Res. 2020;19(4):1351–60. DOI: 10.1021/acs.jproteome.0c00129
8. Yi Y., Lagniton P.N.P., Ye S., Li E., Xu R.H. COVID-19: what has been learned about the novel coronavirus disease. Int J Biol Sci. 2020;16(10):1753–66. DOI: 10.7150/ijbs.45134
9. Cui J., Li F., Shi Z.L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181–92. DOI: 10.1038/s41579-018-0118-9
10. Ceraolo C., Giorgi F.M. Genomic variance of the 2019- nCoV coronavirus. J Med Virol. 2020;92(5):522–8. DOI: 10.1002/jmv.25700
11. Khailany R.A., Safdar M., Ozaslan M. Genomic characterization of a novel SARS-CoV-2. Gene Rep. 2020;19:100682. DOI: 10.1016/j.genrep.2020.100682
12. de Wilde A.H., Snijder E.J., Kikkert M., van Hemert M.J. Host factors in coronavirus replication. Curr Top Microbiol Immunol. 2018;419:1–42. DOI: 10.1007/82_2017_25
13. Tan Y.W., Hong W., Liu D.X. Binding of the 5’-untranslated region of coronavirus RNA to zinc finger CCHC-type and RNA-binding motif 1 enhances viral replication and transcription. Nucleic Acids Res. 2012;40(11):5065–77. DOI: 10.1093/nar/gks165
14. Lin L., Lu L., Cao W., Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection — a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect. 2020;9(1):727–32. DOI: 10.1080/22221751.2020.1746199
15. Giwa AL, Desai A, Duca A. Novel 2019 coronavirus SARS-CoV-2 (COVID-19): an overview for emergency clinicians. Pediatr Emerg Med Pract. 2020;17(5):1–24. PMID: 32286766
16. Lai C.C., Liu Y.H., Wang C.Y., Wang Y.H., Hsueh S.C., Yen M.Y., et al. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARSCoV-2): Facts and myths. J Microbiol Immunol Infect. 2020;53(3):404–12. DOI: 10.1016/j.jmii.2020.02.012
17. Li Y., Hu Y., Zhang X., Yu Y., Li B., Wu J., et al. Follow-up testing of viral nucleic acid in discharged patients with moderate type of 2019 coronavirus disease (COVID-19). Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020;49(1):270–4. DOI: 10.3785/j.issn.1008-9292.2020.03.11
18. Li Y., Hu Y., Yu Y., Zhang X., Li B., Wu J., et al. Positive result of SarsCov-2 in faeces and sputum from discharged patient with COVID-19 in Yiwu, China. J Med Virol. 2020;92(10):1938–47. DOI: 10.1002/jmv.25905
19. Hurwitz J.L., Jones B.G., Charpentier E., Woodland D.L. Hypothesis: RNA and DNA viral sequence integration into the mammalian host genome supports long-term B cell and T cell adaptive immunity. Viral Immunol. 2017;30(9):628–32. DOI: 10.1089/vim.2017.0099
20. Olson K.E., Bonizzoni M. Nonretroviral integrated RNA viruses in arthropod vectors: an occasional event or something more? Curr. Opin. Insect. Sci. 2017;22:45–53. DOI: 10.1016/j.cois.2017.05.010
21. Ter Horst A.M., Nigg J.C., Dekker F.M., Falk B.W. Endogenous viral elements are widespread in arthropod genomes and commonly give rise to PIWI-interacting RNAs. J Virol. 2019;93(6):e02124–18. DOI: 10.1128/JVI.02124-18
22. Gallei A., Pankraz A., Thiel H.J., Becher P. RNA recombination in vivo in the absence of viral replication. J Virol. 2004;78(12):6271–81. DOI: 10.1128/JVI.78.12.6271-6281.2004
23. Austermann-Busch S., Becher P. RNA structural elements determine frequency and sites of nonhomologous recombination in an animal plus-strand RNA virus. J Virol. 2012;86(13):7393–402. DOI: 10.1128/JVI.00864-12
24. Zhdanov V.M. Integration of viral genomes. Nature. 1975;256(5517):471–3. DOI: 10.1038/256471a0
25. Klenerman P., Hengartner H., Zinkernagel R.M. A non-retroviral RNA virus persists in DNA form. Nature. 1997;390:298–301. DOI: 10.1038/36876
26. Geuking M.B., Weber J., Dewannieux M., Gorelik E., Heidmann T., Hengartner H., et al. Recombination of retrotransposon and exogenous RNA virus results in nonretroviral cDNA integration. Science. 2009;323(5912):393–6. DOI: 10.1126/science.1167375
27. Shimizu A., Nakatani Y., Nakamura T., Jinno-Oue A., Ishikawa O., Boeke J.D., et al. Characterisation of cytoplasmic DNA complementary to non-retroviral RNA viruses in human cells. Sci Rep. 2014;4:5074. DOI: 10.1038/srep05074
28. Crochu S., Cook S., Attoui H., Charrel R.N., De Chesse R., Belhouchet M., et al. Sequences of flavivirus-related RNA viruses persist in DNA form integrated in the genome of Aedes spp. mosquitoes. J Gen Virol. 2004;85(Pt 7):1971–80. DOI: 10.1099/vir.0.79850-0
29. Katzourakis A., Gifford R.J. Endogenous viral elements in animal genomes. PLoS Genet. 2010;6(11):e1001191. DOI: 10.1371/journal.pgen.1001191
30. Horie M., Honda T., Suzuki Y., Kobayashi Y., Daito T., Oshida T., et al. Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature. 2010;463(7277):84–7. DOI: 10.1038/nature08695
31. Taylor D.J., Leach R.W., Bruenn J. Filoviruses are ancient and integrated into mammalian genomes. BMC Evol Biol. 2010;10:193. DOI: 10.1186/1471-2148-10-193
32. Belyi V.A., Levine A.J., Skalka A.M. Unexpected inheritance: multiple integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate. PLoS Pathog. 2010;6(7):e1001030. DOI: 10.1371/journal.ppat.1001030
33. Bergmann C.C., Lane T.E., Stohlman S.A. Coronavirus infection of the central nervous system: host-virus stand-off. Nat Rev Microbiol. 2006;4(2):121–32. DOI: 10.1038/nrmicro1343
34. Xiao C., Li X., Liu S., Sang Y., Gao S.J., Gao F. HIV-1 did not contribute to the 2019-nCoV genome. Emerg Microbes Infect. 2020;9(1):378–81. DOI: 10.1080/22221751.2020.1727299
35. Qinfen Z., Jinming C., Xiaojun H., Huanying Z., Jicheng H., Ling F., et al. The life cycle of SARS coronavirus in Vero E6 cells. J Med Virol. 2004;73(3):332–7. DOI: 10.1002/jmv.20095
36. Timani K.A., Liao Q., Ye L., Zeng Y., Liu J., Zheng Y., et al. Nuclear/nucleolar localization properties of C-terminal nucleocapsid protein of SARS coronavirus. Virus Res. 2005;114(1–2):23–34. DOI: 10.1016/j.virusres.2005.05.007
37. Yuan X., Yao Z., Shan Y., Chen B., Yang Z., Wu J., et al. Nucleolar localization of non-structural protein 3b, a protein specifically encoded by the severe acute respiratory syndrome coronavirus. Virus Res. 2005;114(1–2):70–9. DOI: 10.1016/j.virusres.2005.06.001
38. Matthews K.L., Coleman C.M., van der Meer Y., Snijder E.J., Frieman M.B. The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signaling. J Gen Virol. 2014;95(Pt 4):874–82. DOI: 10.1099/vir.0.062059-0
39. Sharma K., Åkerström S., Sharma A.K., Chow V.T., Teow S., Abrenica B., et al. SARS-CoV 9b protein diffuses into nucleus, undergoes active Crm1 mediated nucleocytoplasmic export and triggers apoptosis when retained in the nucleus. PLoS One. 2011;6(5):e19436. DOI: 10.1371/journal.pone.0019436
40. Luo H., Chen Q., Chen J., Chen K., Shen X., Jiang H. The nucleocapsid protein of SARS coronavirus has a high binding affinity to the human cellular heterogeneous nuclear ribonucleoproteins A1. FEBS Lett. 2005;579:2623–8. DOI: 10.1016/j.febslet.2005.03.080
41. Cardelli M. The epigenetic alterations of endogenous retroelements in aging. Mech Ageing Dev. 2018;174:30–46. DOI: 10.1016/j.mad.2018.02.002
42. He W.P., Shu C.L., Li B.A., Zhao J., Cheng Y. Human LINE1 endonuclease domain as a putative target of SARS- associated autoantibodies involved in the pathogenesis of severe acute respiratory syndrome. Chin Med J (Engl). 2008;121(7):608–14. PMID: 18466680
43. Richardson P., Griffin I., Tucker C., Smith D., Oechsle O., Phelan A., et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395:e30–1. DOI: 10.1016/S0140-6736(20)30304-4
44. Hussain S., Gallagher T. SARS-coronavirus protein 6 conformations required to impede protein import into the nucleus. Virus Res. 2010;153(2):299–304. DOI: 10.1016/j.virusres.2010.08.017
45. Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends. 2020;14(1):69–71. DOI: 10.5582/bst.2020.01020
46. Sciamanna I., Sinibaldi-Vallebona P., Serafino A., Spadafora C. LINE-1 encoded reverse Transcriptase as a target in cancer therapy. Front Biosci (Landmark Ed). 2018;23:1360–9. DOI: 10.2741/4648
47. Chen L., Zhong L. Genomics functional analysis and drug screening of SARS-CoV-2. Genes Dis. 2020;7(4):542–50. DOI: 10.1016/j.gendis.2020.04.002
48. Sardar R., Satish D., Birla S., Gupta D. Comparative analyses of SARCoV2 genomes from different geographical locations and other coronavirus family genomes reveals unique features potentially consequential to host-virus interaction and pathogenesis. Heliyon. 2020;6(9):e04658. DOI: 10.1016/j.heliyon.2020.e04658
49. Thanh Le T., Andreadakis Z., Kumar A., Gomez Roman R., Tollefsen S., Saville M., et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020;19(5):305–6. DOI: 10.1038/d41573-020-00073-5