Статья

Hiv-infected patients: Cross site-specific hydrolysis of h2a and h2b histones and myelin basic protein with antibodies against these three proteins

S. Baranova, P. Dmitrienok, V. Buneva, G. Nevinsky,
2021

Anti-DNA antibodies are usually produced against histone-DNA complexes appearing during cell apoptosis, while histones are known as damage-associated molecules. A myelin sheath of axons contains myelin basic protein (MBP) playing an important role in the pathogenesis of autoimmune diseases. Antibodies with enzymatic activities (abzymes) are distinctive features of some autoimmune and viral diseases. Abzymes against different proteins can usually only hydrolyze these specific proteins. Using sequential chromatographies of homogeneous IgG preparations from sera of HIV-infected patients on columns with immobilized MBP, H2a, and H2b histones, the anti-MBP, anti-H2a, and anti-H2b antibodies were obtained. It was first shown that IgGs against H2a and H2b effectively hydrolyze these histones and MBP, while anti-MBP split MBP, H2a, and H2b, but no other control proteins. Using the MALDI mass spectrometry, the cleavage sites of H2a, H2b, and MBP by abzymes against these three proteins were found. Among 14 sites of hydrolysis of H2a by IgGs against H2a and 10 sites by anti-MBP IgGs, only one site of hydrolysis was the same for these abzymes. Eleven cleavage sites of H2b with IgGs against H2b and 10 sites of its hydrolysis with antibodies against MBP were different. Anti-H2a, anti-H2b, and anti-MBP abzymes are unpredictable examples of IgGs possessing not only cross-complexation but also catalytic cross-reactivity, which may be a common phenomenon for such abzymes in patients with different autoimmune diseases. The existence of cross-reactivity of abzymes against H2a and H2b histones and MBP represent a great danger to humans since, in contrast with MBP, histones due to cell apoptosis constantly occur in human blood. Anti-H2a, anti-H2b, and anti-MBP can attack and hydrolyze myelin basic protein of the myelin sheath of axons and plays a negative role in the pathogenesis of several pathologies. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Цитирование

Похожие публикации

Источник

Версии

  • 1. Version of Record от 2021-04-27

Метаданные

Об авторах
  • S. Baranova
    Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Lavrentiev, 630090, Russian Federation
  • P. Dmitrienok
    Pacific Institute of Bioorganic Chemistry, Far East Division, Russian Academy of Sciences, Vladivostok, 690022, Russian Federation
  • V. Buneva
  • G. Nevinsky
Название журнала
  • Biomolecules
Том
  • 10
Выпуск
  • 11
Страницы
  • 1-19
Издатель
  • MDPI AG
Тип документа
  • journal article
Тип лицензии Creative Commons
  • CC
Правовой статус документа
  • Свободная лицензия
Источник
  • scopus