Статья

COVID-19 dynamic model: Balanced identification of general biological and country specific features

A. Sokolov, L. Sokolova,
2021

Typical tasks of scientific research include breaking down a complex phenomenon into its components, considering the processes that determine its dynamics, formalizing the accepted hypotheses in mathematical equations, selecting appropriate experimental and statistical material, and ultimately, constructing a mathematical model. This paper explores a complex bio-social phenomenon (COVID-19 epidemic) using a specific data processing method (balanced identification) as part of data driven modeling approach. Combined with appropriate information technology, the method made it possible to consider a number of models, describe the general biological laws of the virus vs. human interaction (common to all populations), and the country specific social epidemic management in the populations under consideration. As statistical data, only new cases were used. Data from different countries was taken from official sources and processed in a uniform way. © 2020 Elsevier B.V.. All rights reserved.

Цитирование

Похожие публикации

Документы

Источник

Версии

  • 1. Version of Record от 2021-04-27

Метаданные

Об авторах
  • A. Sokolov
    Institute for Information Transmission Problem (Kharkevitch Insitute) Ras, Bolshoy Karetny per. 19, build.1, Moscow, 127051, Russian Federation
  • L. Sokolova
    Federal Research Center Computer Science and Control of Ras Institute for Systems Analysis, pr. 60-letiya Oktyabrya 9, Moscow, 117312, Russian Federation
Название журнала
  • Procedia Computer Science
Том
  • 178
Страницы
  • 301-310
Ключевые слова
  • Viruses; Data processing methods; Data-driven model; Human interactions; Mathematical equations; New case; Scientific researches; Statistical datas; Data handling
Издатель
  • Elsevier B.V.
Тип документа
  • Conference Paper
Тип лицензии Creative Commons
  • CC
Правовой статус документа
  • Свободная лицензия
Источник
  • scopus