Пандемия коронавирусной болезни 2019 (COVID-19) привлекла более пристальное, чем прежде, внимание к проблемам иммунопатологии болезней человека, многие из которых нашли свое отражение при изучении иммуновоспалительных ревматических заболеваний (ИВРЗ). Развитие гипериммунной патологии, получившей название «синдром цитокинового шторма», к патогенетическим субтипам которого относят гемофагоцитарный лимфогистиоцитоз, синдром активации макрофагов и синдром высвобождения цитокинов, входит в число наиболее тяжелых осложнений иммуновоспалительных заболеваний или терапии злокачественных новообразований и может быть стадией прогрессирования COVID-19. В спектре цитокинов, принимающих участие в патогенезе синдрома цитокинового шторма, большое значение придается интерлейкину 6 (ИЛ6). Внедрение в клиническую практику моноклональных антител (мАТ), ингибирующих активность этого цитокина (тоцилизумаб, сарилумаб и др.), относится к числу крупных достижений в лечении ИВРЗ и критических состояний в рамках синдрома цитокинового шторма при COVID-19. В обзоре обсуждаются данные, касающиеся клинического и прогностического значения ИЛ6 и эффективности мАТ к ИЛ6-рецепторам и ИЛ6 и перспективы персонифицированной терапии синдрома цитокинового шторма при COVID-19.
1. Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020 Mar;579(7798):265-9. doi: 10.1038/s41586-020-2008-3
2. World Health Organization. Coronavirus disease (COVID-19) outbreak. Available at: https://www.who.int (accessed 18.04.2020).
3. Насонов ЕЛ. Коронавирусная болезнь 2019 (COVID-19): размышления ревматолога. Научно-практическая ревматология. 2020;58(2):123-32. doi: 10.14412/1995-4484-2020-123-132 [Nasonov EL. Coronavirus disease 2019 (COVID-19): a rheumatologist’s thoughts. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2020;58(2):123-32. doi: 10.14412/1995-4484-2020-123-132 (In Russ.)].
4. Sarzi-Puttini P, Giorgi V, Sirotti S, et al. COVID-19, cytokines and immunosuppression: what can we learn from severe acute respiratory syndrome? Clin Exp Rheumatol. 2020 Mar–Apr;38(2):337-42.
5. Ferro F, Elefante E, Baldini C, et al. COVID-19: the new challenge for rheumatologists. Clin Exp Rheumatol. 2020;38:175-80.
6. Jackson SP, Darbousset R, Schoenwaelder SM. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood. 2019 Feb 28;133(9):906-18. doi: 10.1182/blood-2018-11-882993
7. Guo L, Rondina MT. The era of thromboinflammation: platelets are dynamic sensors and effector cells during infectious diseases. Front Immunol. 2019 Sep 13;10:2204. doi: 10.3389/fimmu.2019.02204
8. Pedersen SF, Ho YC. A storm is raging. J Clin Invest. 2020 Apr 13. pii: 137647. doi: 10.1172/JCI137647
9. Henderson LA, Canna SW, Schulert GS, et al. On the alert for cytokine storm: Immunopathology in COVID-19. Arthritis Rheum. 2020 Apr 15. doi: 10.1002/art.41285
10. Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science. 2020 May 1;368(6490):473-4. doi: 10.1126/science
11. Violi F, Pastori D, Cangemi R, et al. Hypercoagulation and antithrombotic treatment in Coronavirus 2019: A new challenge. Thromb Haemost. 2020 Apr 29. doi: 10.1055/s-0040-1710317
12. Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020 Apr 27. pii: S2213-2600(20)30216-2. doi: 10.1016/S2213-2600(20)30216-2
13. Ramos-Casals M, Brito-Zeron P, Lopez-Guillermo A, et al. Adult haemophagocytic syndrome. Lancet. 2014;383:1503-16. doi: 10.1016/S0140-6736(13)61048-X
14. Behrens EM, Koretzky GA. Review: Cytokine storm syndrome: looking toward the precision medicine era. Arthritis Rheum. 2017;69(6):1135-43. doi: 10.1002/art.40071
15. Carter SJ, Tattersall RS, Ramanan AV. Macrophage activation syndrome in adults: recent advances in pathophysiology, diagnosis and treatment. Rheumatology (Oxford). 2019 Jan 1;58(1):5-17. doi: 10.1093/rheumatology/key006
16. Crayne CB, Albeituni S, Nichols KE, Cron RQ. The immunology of macrophage activation syndrome. Front Immunol. 2019 Feb 1;10:119. doi: 10.3389/fimmu.2019.00119
17. Shimabukuro-Vornhagen A, Gö del P, Subklewe M, et al. Cytokine release syndrome. J Immunother Cancer. 2018;6(1):56. doi: 10.1186/s40425-018-0343-9
18. Gupta KK, Khan MA, Singh SK. Constitutive inflammatory cytokine storm: a major threat to human health. J Interferon Cytokine Res. 2020;40(1):19-23. doi: 10.1089/jir.2019.0085
19. Karakike E, Giamarellos-Bourboulis EJ. Macrophage activationlike syndrome: a distinct entity leading to early death in sepsis. Front Immunol. 2019 Jan 31;10:55. doi: 10.3389/fimmu.2019.00055
20. Sun X, Wang T, Cai D, et al. Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine Growth Factor Rev. 2020 Apr 25. pii: S1359-6101(20)30048-4. doi: 10.1016/j.cytogfr
21. Mehta P. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020. Available at: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30628-0
22. Schulert GS, Grom AA. Pathogenesis of macrophage activation syndrome and potential for cytokine-directed therapies. Ann Rev Med. 2015;66:145-59. doi: 10.1146/annurev-med-061813-012806
23. Fardet L, Galicier L, Lambotte O, et al. Development and validation of the HScore, a score for the diagnosis of reactive hemophagocytic syndrome. Arthritis Rheum. 2014 Sep;66(9):2613-20. doi: 10.1002/art.38690
24. Tay MZ, Poh CM, Renia L, et al. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020 Apr 28. doi: 10.1038/s41577-020-0311-8
25. Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol. 2020 Apr;92(4):424-32. doi: 10.1002/jmv.25685
26. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5
27. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395(10223):507-13. doi: 10.1016/S0140-6736(20)30211-7
28. Wang Z, Yang B, Li Q, et al. Clinical features of 69 cases with coronavirus disease 2019 in Wuhan. China. Clin Infect Dis. 2020. doi: 10.1093/cid/ciaa272
29. Liu Y, Zhang C, Huang F, et al. Elevated plasma level of selective cytokines in COVID-19 patients reflect viral load and lung injury. Nat Sci Rev. 2020:nwaa037. doi: 10.1093/nsr/nwaa037
30. Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020 Apr 18;55:102763. doi: 10.1016/j.ebiom.2020.102763
31. Xu B, Fan CY, Wang AL, Zou YL, Yu YH, et al. Suppressed T cell-mediated immunity in patients with COVID-19: A clinical retrospective study in Wuhan, China. J Infect. 2020 Apr 18. pii: S0163-4453(20)30223-1. doi: 10.1016/j.jinf.2020.04.012
32. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020 Apr;8(4):420-2. doi: 10.1016/S2213-2600(20)30076-X
33. Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in wuhan, china. Clin Infect Dis. 2020 Mar 12. pii: ciaa248. doi: 10.1093/cid/ciaa248
34. Shi Y, Tan M, Chen X, et al. Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China. medRxiv. 2020.03.12.20034736. doi: 10.1101/2020.03.12.20034736
35. Zhou Y, Fu B, Zheng X, et al. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. 2020. Available at: https://academic.oup.com/nsr/article-abstract/doi/10.1093/nsr/nwaa041/5804736
36. Zheng M, Gao Y, Wang G, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020 May;17(5):533-5. doi: 10.1038/s41423-020-0402-2
37. Zheng HY, Zhang M, Yang CX, Zhang N, Wang XC, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020 May;17(5):541-3. doi: 10.1038/s41423-020-0401-3
38. Zhou Y, Fu B, Zheng X, et al. Abberant pathogenic GM-CSF+T cells and inflammatory CD14+CD16+ monocyte in severe pulmonary syndrome patients of a new coronavirus. bioRxiv. 2020. doi: 10.1101/2020.02.12.945576
39. Fox SE, Akmatbekov A, Harbert JL, et al. Pulmonary and cardiac pathology in COVID-19: The first autopsy series from New Orleans. medRxiv. 2020.04.06.20050575. doi: 10.1101/2020.04.06.20050575
40. Tanaka T, Narazaki M, Kishimoto T. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy. 2016 Jul;8(8):959-70. doi: 10.2217/imt-2016-0
41. Grom AA, Horne A, De Benedetti F. Macrophage activation syndrome in the era of biologic therapy. Nat Rev Rheumatol. 2016 May;12(5):259-68. doi: 10.1038/nrrheum.2015.179
42. Choy EH, De Benedetti F, Takeuchi T, et al. Translating IL-6 biology into effective treatments. Nat Rev Rheumatol. 2020 Apr 23. doi: 10.1038/s41584-020-0419-z
43. McGonagle D, Sharif K, O'Regan A, Bridgewood C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev. 2020 Apr 3:102537. doi: 10.1016/j.autrev.2020.102537
44. Zhang C, Wu Z, Li JW, et al. The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality. Int J Antimicrob Agents. 2020 Mar 29:105954. doi: 10.1016/j.ijantimicag.2020
45. Calabrese LH, Rose-John S. IL-6 biology: implications for clinical targeting in rheumatic disease. Nat Rev Rheumatol. 2014;10:720-7. doi: 10.1038/nrrheum.2014.127
46. Насонов ЕЛ, Лила АМ. Ингибиция интерлейкина 6 при иммуновоспалительных ревматических заболеваниях: достижения, перспективы и надежды. Научно-практическая ревматология. 2017;55(6):590-9. doi: 10.14412/1995-4484-2017-590-599 [Nasonov EL, Lila AM. Inhibition of interleukin 6 in immune inflammatory rheumatic diseases: achievements, prospects, and hopes. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2017;55(6):590-9. doi: 10.14412/1995-4484-2017-590-599 (In Russ.)].
47. Kang S, Tanaka T, Narazaki M, Kishimoto T. Targeting Interleukin-6 Signaling in Clinic. Immunity. 2019 Apr 16;50(4):1007-23. doi: 10.1016/j.immuni.2019.03.026
48. Koch C, Barrett D, Teachey T. Tocilizumab for the treatment of chimeric antigen receptor T cell-induced cytokine release syndrome. Exp Rev Clin Immunol. 2019;15:813-22. doi: 10.1080/1744666X.2019.1629904
49. Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014 Oct 16;371(16):1507-17. doi: 10.1056/NEJMoa1407222
50. Liu B, Li M, Zhou Z, et al. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J Autoimmun. 2020 Apr 10:102452. doi: 10.1016/j.jaut.2020.102452
51. Garbers C, Heink S, Korn T, Rose-John S. Interleukin-6: designing specific therapeutics for a complex cytokine. Nat Rev Drug Discov. 2018 Jun;17(6):395-412. doi: 10.1038/nrd.2018.45
52. Murakami M, Kamimura D, Hirano T. Pleiotropy and Specificity: Insights from the Interleukin 6 Family of Cytokines. Immunity. 2019 Apr 16;50(4):812-31. doi: 10.1016/j.immuni.2019.03.027
53. Jones SA, Jenkins BJ. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol. 2018 Dec;18(12):773-89. doi: 10.1038/s41577-018-0066-7
54. Huang Y, Tu M, Wang S, et al. Clinical characteristics of laboratory confirmed positive cases of SARS-CoV-2 infection in Wuhan, China: A retrospective single center analysis. Travel Med Infect Dis. 2020:101606. doi: 10.1016/j.tmaid.2020.101606
55. Lui T, Zhang J, Yang Y, et al. The potential role of IL-6 in monitoring severe case of coronavirus disease 2019. medRxiv. 2020. doi: 10.1101/2020.03.01.20029769
56. Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020. doi: 10.1007/s00134-020-05991
57. Diao B, Wang C, Tan Y, et al. Reduction and functional exhaustion of T Cells in patients with coronavirus disease 2019 (COVID-19). medRxiv. 2020. doi: 10.1101/2020.02.18.20024364
58. Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020 Mar:1-10. doi: 10.1001/jamainternmed.2020.0994
59. Zhu W, Xie K, Lu H, et al. Initial clinical features of suspected coronavirus disease 2019 in two emergency departments outside of Hubei, China. J Med Virol. 2020. doi: 10.1002/jmv.25763
60. Zhou Y, Han T, Chen J, et al. Clinical and autoimmune characteristics of severe and critical cases with COVID-19. Clin Transl Sci. doi: 10.1111/CTS.12805
61. Wenjun W, Xiaoqing L, Lie P, et al. The definition and risk of cytokine release syndrome-like in 11 COVID-19 infected pneumonia critically ill patients: disease characteristics and retrospective analysis. medRxiv. doi: 10.1101/2020.02.26.20026989
62. Chen G, Wu D, Guo W, et al. Clinical and immunologic features in severe and moderate Coronavirus Disease 2019. J Clin Invest. 2020;(1095):2020.02.16.20023903. doi: 10.1172/JCI137244
63. Li Y, Hu Y, Yu J, Ma T. Retrospective analysis of laboratory testing in 54 patients with severer critical type 2019 novel coronavirus pneumonia. Lab Invest. doi: 10.1038/s41374-020-0431-6
64. Zhu Z, Cai T, Fan L, et al. Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019. Int J Infect Dis. 2020. doi: 10.1016/j.ijid.2020.04.041
65. Wan S, Yi Q, Fan S, et al. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients. Br J Haematol. 2020 May;189(3):428-37. doi: 10.1111/bjh.16659
66. Herold T, Jurinovic V, Arnreixh C, et al. Level pf IL-6 predicrs respiratory failure in hospiralized symptomatic COVID-19 patients. medRxiv. doi: 10.1101/2020.04.01.20047381
67. Coomes EA, Haghbayan H. Interleukin-6 in COVID-19: a systemic review and meta-analysis. medRxiv. doi: 10.1101/2020.03.30.200448058
68. Aziz M, Fatima R, Assaly R. Elevated interleukin-6 and severe COVID-19: A meta-analysis. J Med Virol. 2020 Apr 28. doi: 10.1002/jmv.25948
69. Song C-Y, Xu J, He J-Q, Lu Y-Q. COVID-19 early warning score: a multi- parameter screening tool to identify highly suspected patients. medRxiv. 2020:2020.03.05.20031906. doi: 10.1101/2020.03.05.20031906
70. Zhang H, Wang X, Fu Z, et al. Potential factors for prediction of disease severity of COVID-19 patients. medRxiv. 2020.03.20.20039818. doi: 10.1101/2020.03.20.20039818
71. Zhang B, Zhou X, Zhu C, et al. Immune phenotyping based on neutrophil-to-lymphocyte ratio and IgG predicts disease severity and outcome for patients with COVID-19. medRxiv. 2020.03.12.20035048. doi: 10.1101/2020.03.12.20035048
72. Lagunas-Rangel FA, Chavez-Valencia V. High IL-6/IFN-γ ratio could be associated with severe disease in COVID-19 patients. J Med Virol. 2020 Apr 16. doi: 10.1002/jmv.25900
73. Ranucci M, Ballotta A, Di Dedda U, et al. The procoagulant patter of patients with COVID-19 acute respiratory distress syndrome. medRxiv. 2020. doi: 10.111/JTH.14854
74. Zou L, Ruan F, Huang M, et al. SARS-CoV-2 Viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020 Mar 19;382(12):1177-9. doi: 10.1056/NEJMc2
75. Chen X, Zhao B, Qu Y, et al. Detectable serum SASR-CoV-2 viral load (RNAaemia) is closely correlated witn drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. Clin Infect Dis. 2020. Available at: https://academic.oup/cid/
76. Li H, Liu L, Zhang D, et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020 Apr 17. pii: S0140-6736(20)30920-X. doi: 10.1016/S0140-6736(20)30920
77. Gao Y, Li T, Han M, et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol. 2020 Mar 17. doi: 10.1002/jmv.25770
78. Liu F, Li L, Xu M, et al. Prognostic value of interleukin-6, Creactive protein, and procalcitonin in patients with COVID-19. J Clin Virol. 2020 Apr 14;127:104370. doi: 10.1016/j.jcv.2020.104370
79. Yun H, Sun Z, Wu J, et al. Laboratory data analysis of novel coronavirus (COVID-19) screening in 2510 patients. Clin Chim Acta. 2020 Apr 18;507:94-7. doi: 10.1016/j.cca.2020.04.018
80. Zheng Y, Xu H, Yang M, et al. Epidemiological characteristics and clinical features of 32 critical and 67 noncritical cases of COVID-19 in Chengdu. J Clin Virol. 2020 Apr 10;127:104366. doi: 10.1016/j.jcv.2020.104366
81. Zhu J, Ji P, Pang J, et al. Clinical characteristics of 3,062 COVID-19 patients: a meta-analysis. J Med Virol. 2020 Apr 15. doi: 10.1002/jmv.25884
82. Tan C, Huang Y, Shi F, et al. C-reactive protein correlates with computed tomographic findings and predicts severe COVID-19 early. J Med Virol. 2020 Apr 13. doi: 10.1002/jmv.25871
83. Wang L. C-reactive protein levels in the early stage of COVID-19. Med Mal Infect. 2020 Mar 31. pii: S0399-077X(20)30086-X. doi: 10.1016/j.medmal
84. Li H, Xiang X, Ren H, et al. Serum amyloid A is a biomarker of severe Coronavirus Disease and poor prognosis. J Infect. 2020 Apr 8. pii: S0163-4453(20)30162-6. doi: 10.1016/j.jinf.2020.03.035
85. Насонов ЕЛ, редактор. Генно-инженерные биологические препараты в лечении ревматоидного артрита. Москва, ИМА-ПРЕСС; 2013. 549 c. [Nasonov EL, editor. Genno-inzhenernye biologicheskie preparaty v lechenii revmatoidnogo artrita [Genetically engineered biologicals in the treatment of rheumatoid arthritis]. Moscow: IMA-PRESS; 2013. 549 p. (In Russ.)].
86. Насонов ЕЛ. Применение тоцилизумаба при ревматоидном артрите: новые данные. Научно-практическая ревматология. 2011;49(6):46-56. doi: 10.14412/1995-4484-2011-521 [Nasonov EL. Use of tocilizumab for rheumatoid arthritis: new evidence. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2011;49(6):46-56. doi: 10.14412/1995-4484-2011-521 (In Russ.)].
87. Насонов ЕЛ, Лила АМ. Эффективность и безопасность сарилумаба (полностью человеческие моноклональные антитела к рецептору интерлейкина 6) при ревматоидном артрите: новые данные. Научно-практическая ревматология. 2019;57(5):564-77. doi: 10.14412/1995-4484-2019-564-57 [Nasonov EL, Lila AM. The efficacy and safety of sarilumab, fully human monoclonal antibodies against interleukin 6 receptor, in rheumatoid arthritis: new evidence. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2019;57(5):564-77. doi: 10.14412/1995-4484-2019-564-57 (In Russ.)].
88. Luo P, Liu Y, Qiu L, et al. Tocilizumab treatment in COVID-19: a single center experience. J Med Virol. 2020 Apr 6. doi: 10.1002/jmv.25801
89. Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A. 2020 Apr 29. pii: 202005615. doi: 10.1073/pnas.2005615117
90. Roumier M, Paule R, Groh M, et al. Interleukin-6 blockade for severe COVID-19. BMJ. 2020 Apr. doi: 10.1101/2020.04.20.20061861
91. Klopfenstein T, Zayet S, Lohse A, et al. Tocilizumab therapy reduced intensive care unit admissions and/or mortality in COVID-19 patients. Med Mal Infect. 2020 May 6. pii: S0399-077X(20)30129-3. doi: 10.1016/j.medmal.2020.05.001
92. Quartuccio L, Sonaglia A, McGonagle D, et al. Profiling COVID-19 pneumonia progressing into the cytokine storm syndrome: results from a single Italian Centre study on tocilizumab versus standard of care. medRxiv. 2020.05.01.20078360. doi: 10.1101/2020.05.01.20078360
93. Toniati P, Piva S, Cattalini M, et al. Brescia International Research and Training HUB (BIRTH). Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy. Autoimmun Rev. 2020 May 3:102568. doi: 10.1016/j.autrev.2020.102568
94. Alattar R, Ibrahim TBH, Shaar SH, et al. Tocilizumab for the treatment of severe COVID-19. J Med Virol. 2020 May 5. doi: 10.1002/jmv.25964
95. Sciascia S, Apra F, Baffa A, et al. Pilot prospective open, singlearm multicentre study on off-label use of tocilizumab in severe patients with COVID-19. Clin Exp Rheumatol. 2020;8 May 1.
96. Colaneri M, Bogliolo L, Valsecchi P, et al. The Covid Irccs San Matteo Pavia Task Force. Tocilizumab for Treatment of Severe COVID-19 Patients: Preliminary Results from SMAtteo COvid19 REgistry (SMACORE). Microorganisms. 2020 May 9;8(5). pii: E695. doi: 10.3390/microorganisms8050695
97. Odievre MH, de Marcellus C, Ducou Le Pointe H, et al. Dramatic improvement after Tocilizumab of a severe COVID-19 in a child with sickle cell disease and acute chest syndrome. Am J Hematol. 2020 May 1. doi: 10.1002/ajh.25855
98. Alberici F, Delbarba E, Manenti C, et al. A single center observational study of the clinical characteristics and short-term outcome of 20 kidney transplant patients admitted for SARS-CoV2 pneumonia. Kidney Int. 2020 Apr 9. pii: S0085-2538(20)30365-3. doi: 10.1016/j.kint.2020.04.002
99. Radbel J, Narayanan N, Bhatt PJ. Use of tocilizumab for COVID-19 infection-induced cytokine release syndrome: A cautionary case report. Chest. 2020 Apr 25. pii: S0012-3692(20)30764-9. doi: 10.1016/j.chest.2020.04.024
100. Ferrey AJ, Choi G, Hanna RM, et al. A case of novel coronavirus disease 19 in a chronic hemodialysis patient presenting with gastroenteritis and developing severe pulmonary disease. Am J Nephrol. 2020;1-6. doi: 10.1159/000507417
101. Michot JM, Albiges L, Chaput N, et al. Tocilizumab, an anti-IL6 receptor antibody, to treat COVID-19-related respiratory failure: a case report. Ann Oncol. 2020. doi: 10.1016/j.annonc.2020.03.300
102. Zhang X, Song K, Tong F, et al. First case of COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood Adv. 2020;4(7):1307-10. doi: 10.1182/bloodadvances.2020001907
103. Fontana F, Alfano G, Mori G, et al. COVID-19 pneumonia in a kidney transplant recipient successfully treated with Tocilizumab and Hydroxychloroquine. Am J Transplant. 2020 Apr 23. doi: 10.1111/ajt.15935
104. Blanco JL, Ambrosioni J, Garcia F, et al. COVID-19 in patients with HIV: clinical case series. Lancet HIV. 2020 Apr. doi: 10.1016/S2352-3018(20)30111-9. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32304642
105. Cellina M, Orsi M, Bombaci F, et al. Favorable changes of CT findings in a patient with COVID-19 pneumonia after treatment with tocilizumab. Diagn Interv Imaging. 2020. doi: 10.1016/j.diii.2020.03.010. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32278585
106. De Luna G, Habibi A, Deux JF, et al. Rapid and severe COVID-19 pneumonia with severe acute chest syndrome in a sickle cell patient successfully treated with Tocilizumab. Am J Hematol. 2020 Apr. doi: 10.1002/ajh.25833. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32282956
107. Di Giambenedetto S, Ciccullo A, Borghetti A, et al. Off-label use of Tocilizumab in patients with SARS-CoV-2 infection. J Med Virol. 2020 Apr. doi: 10.1002/jmv.25897. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32297987
108. Hartman ME, Hernandez RA, Patel K, et al. COVID-19 respiratory failure: targeting inflammation on VV-ECMO support. ASAIO J. 2020 Apr. doi: 10.1097/MAT.0000000000001177. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32304395
109. Treon SP, Castillo J, Skarbnik AP, et al. The BTK-inhibitor ibrutinib may protect against pulmonary injury in COVID-19 infected patients. Blood. 2020 Apr. doi: 10.1182/blood.2020006288. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32302379
110. Wong SY, Leong KH, Ng KS, et al. An elderly couple with COVID-19 pneumonia treated in Singapore: contrasting clinical course and management. Singapore Med J. 2020 Apr. doi: 10.11622/smedj.2020064. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32312026
111. Holzhauser L, Lourenco L, Sarswat N, et al. Early experience of COVID-19 in two heart transplant recipients: case reports and review of treatment options. Am J Transplant. 2020 May 7. doi: 10.1111/ajt.15982
112. Alzghari SK, Acuna VS. Supportive treatment with Tocilizumab for COVID-19: A systematic review. J Clin Virol. 2020 Apr 21;127:104380. doi: 10.1016/j.jcv.2020.104380
113. Khan F, Fabbri L, Stewart I, et al. A systematic review of Anakinra, Tocilizumab, Sarilumab and Siltuximab for coronavirus-related infections. medRxiv. 2020.04.23.20076612. doi: 10.1101/2020.04.23.20076612
114. Assistance Publique Hopitaux de Paris. Tocilizumab improves significantly clinical outcomes of patients with moderate or severe COVID-19 pneumonia. April 2020. Available at: https://www.aphp.fr/contenu/tocilizumab-improves-significantly-clinical-outcomes-patients-moderate-or-severe-covid-19 (accessed 27.04.2020).
115. World Health Organization. WHO R&D Blueprint. COVID-19. Informal consultation on the potential role of IL-6/IL-1 antagonists in the clinical management of COVID 19 infection. March 2020. Available at: https://www.who.int/blueprint/priority-diseases/key-action/Expert_group_IL6_IL1_call_25_mar2020.pdf (accessed 04.04.2020).
116. Regeneron and Sanofi Begin Global Kevzara (Sarilumab) Clinical Trial Program in Patients with Severe COVID-19. Regeneron/Sanofi. 2020 Mar 16. Available at: https://investor.regeneron.com/news-releases/news-releasedetails/regeneron-and-sanofi-begin-global-kevzarar-sarilumabclinical
117. Gritti G, Raimondi F, Ripamonti D, et al. Use of siltuximab in patients with COVID-19 pneumonia requiring ventilatory support. medRxiv. 2020.04.01.20048561. doi: 10.1101/2020.04.01.20048561
118. Marfella R, Paolisso P, Sardu C, et al. Negative impact of hyperglycemia on Tocilizumab therapy in COVID-19 patients. medRxiv. 2020.04.29.20076570. doi: 10.1101/2020.04.29.20076570
119. ICNARC report on COVID-19 in clinical care – 10 Apr 2020. Available at: https://www.icnarc/ouraudit/audit/com
120. Russell B, Moss C, George G, et al. Associations between immune-suppressive and stimulating drugs and novel COVID-19- a systematic review of current evidence. Ecancer. 2020 Mar 27;14:1022. doi: 10.3332/ecancer.2020.1022
121. Nicastri E, Petrosillo N, Bartoli TA, et al. National Institute for the Infectious Diseases «L. Spallanzani», IRCCS. Recommendations for COVID-19 clinical management. Infect Dis Rep. 2020 Mar 16;12(1):8543. doi: 10.4081/idr.2020.8543
122. Bergin C. Interim Recommendations for the use of Tocilizumab in the Management of Patients who have Severe COVID-19 with Suspected Hyperinflammation. Available at: https://www.hse.ie/eng/about/who/acute-hospitalsdivision/drugs-management-programme/interim-recommendations-for-the-use-of-tocilizumab-in-the-management-ofpatients-with-severe-covid-19.pdf
123. Zhang S, Li L, Shen A, et al. Rational use of Tocilizumab in the treatment of novel coronavirus pneumonia. Clin Drug Investig. 2020 Apr 26. doi: 10.1007/s40261-020-00917-3
124. Michigan Medicine. University of Michigan. Inpatient guidance for treatment of COVID-19 in adults and children. Available at: Michigan.gov
125. Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 7). People’s Republic of China: National Health Commission & State Administration of Traditional Chinese Medicine; 2020.
126. Tocilizumab (Actemra): Adult patients with moderately to severely active rheumatoid arthritis [Internet]. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; 2015 Aug. CDEC Final Recommendation. Available at: https://www.ncbi.nlm.nih.gov/books/NBK349506/
127. Насонов ЕЛ, Лила АМ, Мазуров ВИ и др.; по поручению президиума Общероссийской общественной организации «Ассоциация ревматологов России». Проект рекомендаций Общероссийской общественной организации «Ассоциация ревматологов России». Коронавирусная болезнь 2019 (COVID-19) и иммуновоспалительные (аутоиммунные) ревматические заболевания. Доступно по ссылке: https://rheumatolog.ru [Nasonov EL, Lila AM, Mazurov VI, et al; on behalf of the Presidium of the All-Russian Public Organization «Association of Rheumatologists of Russia». Proekt rekomendatsiy Obshcherossiyskoy obshchestvennoy organizatsii «Assotsiatsiya revmatologov Rossii». Koronavirusnaya bolezn' 2019 (COVID-19) i immunovospalitel'nye (autoimmunnye) revmaticheskie zabolevaniya [Draft recommendations of the All-Russian public organization «Association of Rheumatologists of Russia». Coronavirus disease 2019 (COVID-19) and immuno-inflammatory (autoimmune) rheumatic diseases]. Available at: https://rheumatolog.ru (In Russ.)].
128. Scott LJ. Tocilizumab: A review in rheumatoid arthritis. Drugs. 2017;77:1865-79. doi: 10.1007/s40265-017-0829-7
129. Rello J, Storti E, Belliato M, Serrano R. Clinical phenotypes of SARS-CoV-2: Implications for clinicians and researchers. Eur Respir J. 2020 Apr 27. pii: 2001028. doi: 10.1183/13993003.01028-2020
130. Jamilloux Y, Henry T, Belot A, et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anticytokine interventions. Autoimmun Rev. 2020 May 3:102567. doi: 10.1016/j.autrev.2020.102567
131. Zheng Z, Peng F, Xu B, et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. J Infect. 2020 Apr 23. pii: S0163-4453(20)30234-6. doi: 10.1016/j.jinf.2020.04.021
132. Chen X, Hu W, Ling J, et al. Hypertension and diabetes delay the viral clearance in COVID-19 patients. medRxiv 2020. doi: 10.1101/2020.03.22.20040774
133. Smolen JS, Aletaha D, Barton A, et al. Rheumatoid arthritis. Nat Rev Dis Primers. 2018;4:18001. doi: 10.1038/nrdp.2018
134. Schwartz DM, Kanno Y, Villarino A, et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16(12):843-62. doi: 10.1038/nrd.2017.201
135. Насонов ЕЛ, Лила АМ. Ингибиторы Янус-киназ при иммуновоспалительных ревматических заболеваниях: новые возможности и перспективы. Научно-практическая ревматология. 2019;57(1):8-16. doi: 10.14412/1995-4484-2019-8-16 [Nasonov EL, Lila AM. Janus kinase inhibitors in immunoinflammatory rheumatic diseases: new opportunities and prospects. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2019;57(1):8-16. doi: 10.14412/1995-4484-2019-8-16 (In Russ.)].
136. Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020 Feb 15;395(10223):e30-e31. doi: 10.1016/S0140-6736(20)30304-4
137. Stebbing J, Phelan A, Griffin I, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020 Feb 27. doi: 10.1016/S1473-3099(20)30132-8
138. Cantini F, Niccoli L, Matarrese D, et al. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J Infect. 2020 Apr 22. pii: S0163-4453(20)30228-0. doi: 10.1016/j.jinf.2020.04.017
139. Jagasia M, Perales MA, Schroeder MA, et al. Ruxolitinib for the treatment of steroid-refractory acute GVHD (REACH1): a multicenter, open-label, phase 2 trial. Blood. 2020 Mar 5. pii: blood.2020004823. doi: 10.1182/blood.2020004823
140. Ahmed A, Merrill SA, Alsawah F, et al. Ruxolitinib in adult patients with secondary haemophagocytic lymphohistiocytosis: an open-label, single-centre, pilot trial. Lancet Haematol. 2019;6(12):e630-e637. doi: 10.1016/S2352-3026(19)30156-5
141. Velazquez-Salinas L, Verdugo-Rodriguez A, Rodriguez LL, Borca MV. The role of interleukin 6 during viral infections. Front Microbiol. 2019 May 10;10:1057. doi: 10.3389/fmicb.2019.01057
142. Cifaldi L, Prencipe G, Caiello I, et al. Inhibition of natural killer cell cytotoxicity by interleukin-6: implications for the pathogenesis of macrophage activation syndrome. Arthritis Rheum. 2015 Nov;67(11):3037-46. doi: 10.1002/art.39295
143. Ingraham NE, Lotfi-Emran S, Thielen BK, et al. Immunomodulation in COVID-19. Lancet Respir Med. 2020 May 4. pii: S2213-2600(20)30226-5. doi: 10.1016/S2213-2600(20)30226-5
144. Schett G, Elewaut D, McInnes IB, et al. How cytokine networks fuel inflammation: Toward a cytokine-based disease taxonomy. Nat Med. 2013 Jul;19(7):822-4. doi: 10.1038/nm.3260
145. Schett G, Sticherling M, Neurath MF. COVID-19: risk for cytokine targeting in chronic inflammatory diseases? Nat Rev Immunol. 2020 May;20(5):271-2. doi: 10.1038/s41577-020-0312-7
146. Насонов ЕЛ. Роль интерлейкина 1 в развитии заболеваний человека. Научно-практическая ревматология. 2018;56(Прил. 1):19-27. doi: 10.14412/1995-4484-2018-19-27 [Nasonov EL. The role of interleukin 1 in the development of human diseases. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2018;56(Suppl. 4):19-27. doi: 10.14412/1995-4484-2018-19-27 (In Russ.)].
147. Dinarello CA. The IL-1 family of cytokines and receptors in rheumatic diseases. Nat Rev Rheumatol. 2019 Oct;15(10):612- 32. doi: 10.1038/s41584-019-0277-8
148. Feldmann M, Maini RN, Woody JN, et al. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet. 2020 May 2;395(10234):1407-9. doi: 10.1016/S0140-6736(20)30858-8
149. Nemeth T, Sperandio M, Mocsai A. Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov. 2020 Apr;19(4):253-75. doi: 10.1038/s41573-019-0054-z
150. Pacha O, Sallman MA, Evans SE. COVID-19: a case for inhibiting IL-17? Nat Rev Immunol. 2020 May 1. doi: 10.1038/s41577-020-0328-z
151. McClain KL, Allen CE. Fire behind the fury: IL-18 and MAS. Blood. 2018 Mar 29;131(13):1393-4. doi: 10.1182/blood-2018-02-828186
152. Weiss ES, Girard-Guyonvarch C, Holzinger D, et al. Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome. Blood. 2018;131(13):1442-55. doi: 10.1182/blood-2017-12-820852
153. Risitano AM, Mastellos DC, Huber-Lang M, et al. Complement as a target in COVID-19? Nat Rev Immunol. 2020 Apr 23. doi: 10.1038/s41577-020-0320-7
154. Marsh RA. Epstein-Barr virus and hemophagocytic lymphohistiocytosis. Front Immunol. 2017;8:1902. doi: 10.3389/fimmu.2017.01902
155. Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn’s disease and ulcerative colitis? Ann Rheum Dis. 2018;77(2):175-87. doi: 10.1136/annrheumdis- 2017-211555
156. Насонов ЕЛ. Фармакотерапия ревматоидного артрита: новая стратегия, новые мишени. Научно-практическая ревматология. 2017;55(4):409-19. doi: 10.14412/1995-4484-2017-409-419 [Nasonov EL. Pharmacotherapy for rheumatoid arthritis: new strategy, new targets. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2017;55(4):409-19. doi: 10.14412/1995-4484-2017-409-419 (In Russ.)].
157. Mantovani A, Dinarello CA, Molgora M, Garlanda C. Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity. 2019 Apr 16;50(4):778-95. doi: 10.1016/j.immuni.2019.03.012
158. Bettiol A, Lopalco G, Emmi G, et al. Unveiling the efficacy, safety, and tolerability of anti-interleukin-1 treatment in monogenic and multifactorial autoinflammatory diseases. Int J Mol Sci. 2019 Apr 17;20(8):1898. doi: 10.3390/ijms20081898
159. Shakoory B, Carcillo JA, Chatham WW, et al. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: reanalysis of a prior phase iii trial. Crit Care Med. 2016;44:275-81. doi: 10.1097/CCM.0000000000001402
160. Eloseily EM, Weiser P, Crayne CB, et al. Benefit of anakinra in treating pediatric secondary hemophagocytic lymphohistiocytosis. Arthritis Rheum. 2020 Feb;72(2):326-34. doi: 10.1002/art.41103
161. Monteagudo LA, Boothby A, Gertner E. Continuous intravenous Anakinra infusion to calm the cytokine storm in macrophage activation syndrome. ACR Open Rheumatol. 2020 Apr 8. doi: 10.1002/acr2.11135
162. Mehta P, Cron RQ, Hartwell J, et al. Silencing the cytokine storm: the use of intravenous anakinra in haemophagocytic lymphohistiocytosis or macrophage activation syndrome. Lancet Rheumatol. 2020 May 4. doi: 10.1016/S2665-9913(20)30096-5
163. Aouba A, Baldolli A, Geffray L, et al. Targeting the inflammatory cascade with anakinra in moderate to severe COVID-19 pneumonia: case series. Ann Rheum Dis. 2020 May 6. pii: annrheumdis- 2020-217706. doi: 10.1136/annrheumdis-2020-217706
164. Hamilton JA. GM-CSF-Dependent Inflammatory Pathways. Front Immunol. 2019 Sep 4;10:2055. doi: 10.3389/fimmu.2019.02055.eCollection 2019.
165. Crotti C, Agape E, Becciolini A, et al. Targeting granulocytemonocyte colony-stimulating factor signaling in rheumatoid arthritis: future prospects. Drugs. 2019 Nov;79(16):1741-55. doi: 10.1007/s40265-019-01192-z
166. Temple Treats First Patient in the U.S. in Clinical Trial of Gimsilumab for Patients with COVID-19 and Acute Respiratory Distress Syndrome. News Release. Temple Health; April 15, 2020. Accessed April 16, 2020. Available at: https://www.templehealth.org/about/news/temple-universityhospital-treat
167. Lounder DT, Bin Q, de Min C, Jordan MB. Treatment of refractory hemophagocytic lymphohistiocytosis with emapalumab despite severe concurrent infections. Blood Adv. 2019 Jan 8;3(1):47-50. doi: 10.1182/bloodadvances.2018025858
168. Vallurupalli M, Berliner N. Emapalumab for the treatment of relapsed/refractory hemophagocytic lymphohistiocytosis. Blood. 2019 Nov 21;134(21):1783-6. doi: 10.1182/blood.2019002289
169. Canna SW, Girard C, Malle L, Gabay C. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J Allergy Clin Immunol. 2017;139:1698-701. doi: 10.1016/j.jaci.2016.10.022
170. Gabay C, Fautrel B, Rech J, et al. Open-label, multicentre, doseescalating phase II clinical trial on the safety and efficacy of tadekinig alfa (IL-18BP) in adult-onset Still’s disease. Ann Rheum Dis. 2018;77:840-7. doi: 10.1136/annrheumdis-2017-212608
171. Ricklin D, Mastellos DC, Lambris JD. Therapeutic targeting of the complement system. Nat Rev Drug Discov. 2019 Dec 9. doi: 10.1038/s41573-019-0055-y
172. Gao T, Hu M, Zhang X, et al. Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. medRxiv. 2020.03.29.20041962. doi: 10.1101/2020.03.29.20041962
173. Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. 2020 Apr 15. pii: S1931-5244(20)30070-0. doi: 10.1016/j.trsl.2020.04.007
174. Campbell CM, Kahwash R. Will complement inhibition be the new target in treating COVID-19 related systemic thrombosis? Circulation. 2020 Apr 9. doi: 10.1161/CIRCULATIONAHA.120.047419
175. McGonagle D, O’Donnel JS, Sharif K, et al. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2020 May 7. doi: 10.1016/S2665-9913(20)30121-1
176. Henry BM, Vikse J, Benoit S, et al. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin Chim Acta. 2020 Apr 26;507:167-73. doi: 10.1016/j.cca.2020.04.027
177. Насонов ЕЛ, Решетняк ТМ, Алекберова ЗС. Тромботическая микроангиопатия в ревматологии: связь тромбовоспаления и аутоиммунитета. Терапевтический архив. 2020;92(5). doi: 10.26442/00403660.2020.05.000697 [Nasonov EL, Reshetnyak TM, Alekberova ZS. Thrombotic microangiopathy in rheumatology: the relationship of thrombosis and autoimmunity. Terapevticheskiy Arkhiv. 2020;92(5). doi: 10.26442/00403660.2020.05.000697 (In Russ.)].
178. Colafrancesco S, Alessandri C, Conti F, Priori R. COVID-19 gone bad: A new character in the spectrum of the hyperferritinemic syndrome? Autoimmun Rev. 2020 May 5:102573. doi: 10.1016/j.autrev.2020.102573
179. Diurno F, Numis FG, Porta G, et al. Eculizumab treatment in patients with COVID-19: preliminary results from real life ASL Napoli 2 Nord experience. Eur Rev Med Pharmacol Sci. 2020 Apr;24(7):4040-7. doi: 10.26355/eurrev_202004_20875
180. Mastaglio S, Ruggeri A, Risitano AM, et al. The first case of COVID-19 treated with the complement C3 inhibitor AMY-101. Clin Immunol. 2020 Apr 29:108450. doi: 10.1016/j.clim.2020.108450
181. Bekker P, Dairaghi D, Seitz L, et al. Characterization of pharmacologic and pharmacokinetic properties of CCX168, a potent and selective orally administered complement 5a receptor inhibitor, based on preclinical evaluation and randomized Phase 1 clinical study. PLoS One. 2016;11:e0164646. doi: 10.1371/journal.pone.0164646
182. Jayne DRW, Bruchfeld AN, Harper L, et al; CLEAR Study Group. Randomized Trial of C5a Receptor Inhibitor Avacopan in ANCA-Associated Vasculitis. J Am Soc Nephrol. 2017;28(9):2756- 67. doi: 10.1681/ASN.2016111179
183. Prete M, Favoino E, Catacchio G, et al. SARS-CoV-2 infection complicated by inflammatory syndrome. Could high-dose human immunoglobulin for intravenous use (IVIG) be beneficial? Autoimmun Rev. 2020 Apr 30:102559. doi: 10.1016/j.autrev.2020.102559
184. Perez EE, Orange JS, Bonilla F, et al. Update on the use of immunoglobulin in human disease: a review of evidence. J Allergy Clin Immun. 2017;139:S1-46.
185. Xie Y, Cao S, Dong H, et al. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J Infect. 2020 Apr 10. pii: S0163-4453(20)30172-9. doi: 10.1016/j.jinf.2020.03.044
186. Cao W, Liu X, Bai T, et al. High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with Coronavirus Disease 2019. Open Forum Infect Dis. 2020 Mar 21;7(3):ofaa102. doi: 10.1093/ofid/ofaa102
187. Diez J-M, Romero C, Gajardo R. Currently available intravenous immunoglobulin (Gamunex®-C and Flebogamma® DIF) contains antibodies reacting against SARS-CoV-2 antigens. bioRxiv. 2020 Apr 07:029017. doi: 10.1101/2020.04.07.029017
188. Rojas M, Rodriguez Y, Monsalve DM, et al. Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun Rev. 2020 May 4:102554. doi: 10.1016/j.autrev.2020.102554
Адрес: 115114, Москва, ул. Летниковская, д. 4, стр.5, офис 2.4
тел.\факс: +7(499)754-99-94, доб. 502
e-mail: covid19@neicon.ru
Проект реализуется с использованием гранта Президента Российской Федерации на развитие гражданского общества, предоставленного Фондом президентских грантов.
Содержимое сайта, если не указано иное, опубликовано в соответствии с лицензией Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная (CC BY 4.0). Права на материалы, переданные партнерами проекта, принадлежат их правообладателям.
© 2025 NEICON