Статья

Distribution law of the percolation threshold in one-dimensional bond problems

T. Yakunina, V. Udodov,
2020

A one-dimensional lattice percolation model is constructed for the bond problem at flowing along non-nearest neighbors. Arbitrary parameters were taken (percolation radius, number of nodes in a one-dimensional lattice and number of experiments). Based on original algorithms operating on a computer faster than standard ones, the values of the percolation threshold were obtained with the corresponding error. Based on these data, the hypothesis about the normal distribution of the percolation threshold is tested. Using Pearson’s criterion it was shown for the first time that there is no reason to reject this hypothesis for one-dimensional problems of bonds and sites with an arbitrary percolation radius.

Цитирование

Похожие публикации

Документы

Версии

  • 1. Version of Record от 2020-11-26

Метаданные

Об авторах
  • T. Yakunina
    Siberian Federal University, Sayano-Shushensky branch, settlement Cheryomushki, 46, PO Box 83, Sayanogorsk, Republic of Khakassia, 655619, Russia
  • V. Udodov
    N.F. Katanov Khakas State University, Lenin Ave., 92, office 513, Abakan, Republic of Khakassia, 655017, Russia
Название журнала
  • Journal of Physics Conference Series
Том
  • 1679
Выпуск
  • 3
Страницы
  • 032073
Издатель
  • IOP Publishing
Тип документа
  • journal article
Тип лицензии Creative Commons
  • CC BY
Правовой статус документа
  • Свободная лицензия
Источник
  • dimensions