1. Mousavizadeh L., Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J. Microbiol. Immunol. Infect. 2020;1684– 1182(20):30082–30087. DOI: 10.1016/j.jmii.2020.03.022.
2. Jin Y., Yang H., Ji W., Wu W., Chen S., Zhang W. et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses. 2020;12(4):372. DOI: 10.3390/v12040372
3. Ковалев А.В., Франк Г.А., Минаева П.В., Тучик Е.С. Исследование умерших с подозрением на коронавирусную инфекцию (COVID-19): Временные методические рекомендации. М.; 2020:85. http://www.rc-sme.ru/files/Finish_MR_COVID-19_RCSME_08_04_2020.pdf (24.05.2020).
4. Pal R., Bhansali A. COVID-19, diabetes mellitus and ACE2: The conundrum. Diabetes Res. Clin. Pract. 2020;162:108132. DOI: 10.1016/j.diabres.2020.108132.
5. Yan R., Zhang Y., Li Y., Xia L., Guo Y., Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444–1448. DOI: 10.1126/science.abb2762.
6. Zhao Y., Zhao Z., Wang Y., Zhou Y., Ma Y., Zuo W. Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. BioRxiv. 2020. DOI: 10.1101/2020.01.26.919985.
7. Gralinski L.E., Baric R.S. Molecular pathology of emerging coronavirus infections. The Journal of Pathology. 2015;235(2):185–195. DOI: 10.1002/path.4454.
8. Mason R.J. Pathogenesis of COVID-19 from a cell biology perspective. Eur.Respir. J. 2020;55(4):2000607. DOI: 10.1183/13993003.00607-2020.
9. Jeffers S.A., Tusell S.M., Gillim-Ross L., Hemmila E.M., Achenbach J.E., Babcock G.J. et al. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proceedings of the National Academy of Sciences. 2004;101(44):15748–15753. DOI: 10.1073/pnas.0403812101.
10. Chen Z., Mi L., Xu J., Yu J., Wang X., Jiang J. et al. Function of HAb18G/ CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus. J. Infect. Dis. 2005;191(5):755–760. DOI: 10.1086/427811.
11. Wang K., Chen W., Zhou Y.-S., Lian J.-Q., Zhang Z., Du P. et al. SARSCoV-2 invades host cells via a novel route: CD147-spike protein. BioRxiv. 2020. DOI: 10.1101/2020.03.14.988345.
12. Kato N., Kosugi T., Sato W., Ishimoto T., Kojima H., Sato Y. et al. Basigin/ CD147 promotes renal fibrosis after unilateral ureteral obstruction. The Am. J. Pathol. 2011;178(2):572–579. DOI: 10.1016/j.ajpath.2010.10.009.
13. Muramatsu T. Basigin(CD147), a multifunctional transmembrane glycoprotein with various binding partners. J. Biochem. 2015;159(5):481–490. DOI: 10.1093/jb/mvv127.
14. Lu M., Wu J., Hao Z.-W., Shang Y.-K., Xu J., Nan G. et al. Basolateral CD147 induces hepatocyte polarity loss by E-cadherin ubiquitination and degradation in hepatocellular carcinoma progress. Hepatology. 2018;68(1):317–332. DOI: 10.1002/hep.29798.
15. Zhang M.-Y., Zhang Y., Wu X.-D., Zhang K., Lin P., Bian H.-J. et al. Disrupting CD147-RAP2 interaction abrogates erythrocyte invasion by Plasmodium falciparum. Blood. 2018;131(10):1111–1121. DOI: 10.1182/blood-2017-08-802918.
16. Pushkarsky T., Zybarth G., Dubrovsky L., Yurchenko V., Tang H., Guo H. et al. CD147 facilitates HIV-1 infection by interacting with virus-associated cyclophilin A. Proceedings of the National Academy of Sciences. 2001;98(11):6360–6365. DOI: 10.1073/pnas.111583198.
17. Yurchenko V., Constant S., Eisenmesser E., Bukrinsky M. Cyclophilin-CD147 interactions: a new target for anti-inflammatory therapeutics. Clinical &Experimental Immunology. 2010;160(3):305–317. DOI: 10.1111/j.1365-2249.2010.04115.x.
18. Muramatsu T. Basigin: A multifunctional membrane protein with an emerging role in infections by malaria parasites. Expert Opin. Ther. Targets. 2012;16(10):999–1011. DOI: 10.1517/14728222.2012.711818.
19. Ulrich H., Pillat M.M. CD147 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement. Stem Cell Rev. Rep. 2020;16(3):434–440. DOI: 10.1007/s12015-02009976-7.
20. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020;8(4):420–422. DOI: 10.1016/S22132600(20)30076-X.
21. Yao X.H., Li T.Y., He Z.C., Ping Y.F., Liu H.W., Yu S.C. et al. A pathological report of three COVID-19 cases by minimally invasive autopsies. Chinese Journal of Pathology. 2020;49(5):411–417. DOI: 10.3760/ cma.j.cn112151-20200312-00193.
22. Barton L.M., Duval E.J., Stroberg E., Ghosh S., Mukhopadhyay S. COVID-19 autopsies, Oklahoma, USA. Am. J. Clin. Pathol. 2020;153(6)725–733. DOI: 10.1093/AJCP/AQAA062.
23. Tian S., Hu W., Niu L., Liu H., Xu H., Xiao S.-Y. Pulmonary pathology of early phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J. Thorac. Oncol. 2020;15(5):700–704. DOI: 10.1016/j.jtho.2020.02.010.