Статья

Graphical data processing in the Clinical Decision Making System for the Respiratory Diseases Diagnosis using ML methods

G. Shakhmametova, N. Yusupova, A. Evgrafov, R. Zulkarneev,
2021

This article considers the basic algorithm of graphic data extraction used in the developed system of clinical decision-making in diagnosis of respiratory diseases, methods for processing files in JPEG and DICOM formats, visualizing and preprocessing images as well as constructing neural network models based on a convolutional neural network that provide detection symptoms of pneumonia in patients based on radiographs. Data extraction and processing are performed in the “Python” programming language using additional libraries: “pydicom” for processing DICOM files. “Pillow” for visualization, “Keras” for building a convolutional neural network model. The relevance of the task is due to the large volumes of graphical data supplied to the input of the CDSS and necessary for its effective functioning. The novelty of this development lies in the application of a set of existing and development of new algorithms for extracting and processing graphic information.

Цитирование

Похожие публикации

Документы

Версии

  • 1. Version of Record от 2021-03-01

Метаданные

Об авторах
  • G. Shakhmametova
    Ufa State Aviation Technical University, Ufa, Karl Marx str., 12, 450000, Russia
  • N. Yusupova
    Ufa State Aviation Technical University, Ufa, Karl Marx str., 12, 450000, Russia
  • A. Evgrafov
    Ufa State Aviation Technical University, Ufa, Karl Marx str., 12, 450000, Russia
  • R. Zulkarneev
    Bashkir State Medical University, Ufa, Pushkin str., 12, 450008, Russia
Название журнала
  • IOP Conference Series Materials Science and Engineering
Том
  • 1069
Выпуск
  • 1
Страницы
  • 012009
Издатель
  • IOP Publishing
Тип документа
  • journal article
Тип лицензии Creative Commons
  • CC BY
Правовой статус документа
  • Свободная лицензия
Источник
  • dimensions