Статья

Recognition of Tomographic Images in the Diagnosis of Stroke

K. Kalmutskiy, A. Tulupov, V. Berikov,
2021

In this paper, a method for automatic recognition of acute stroke model using non-contrast computed tomography brain images is presented. The complexity of the task lies in the fact that the dataset consists of a very small number of images. To solve the problem, we used the traditional computer vision methods and a convolutional neural network consisting of a segmentator and classifier. To increase the dataset, augmentations and sub images were used. Experiments with real CT images using validation and test samples showed that even on an extremely small dataset it is possible to train a model that will successfully cope with the classification and segmentation of images. We also proposed a way to increase the interpretability of the model.

Цитирование

Похожие публикации

Источник

Версии

  • 1. Version of Record от 2021-01-01

Метаданные

Об авторах
  • K. Kalmutskiy
    Novosibirsk State University
  • A. Tulupov
    Novosibirsk State University, International Tomography Center of the Siberian Branch of the Russian Academy of the Sciences
  • V. Berikov
    Novosibirsk State University, Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences
Название журнала
  • Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том
  • 12665 LNCS
Страницы
  • 166-171
Финансирующая организация
  • Russian Foundation for Basic Research
Номер гранта
  • 19-29-01175
Тип документа
  • journal article
Тип лицензии Creative Commons
  • CC BY
Правовой статус документа
  • Свободная лицензия
Источник
  • scopus