Статья

Chest x-ray image classification for viral pneumonia and Сovid-19 using neural networks

V. Efremtsev, N. Efremtsev, E. Teterin, P. Teterin, E. Bazavluk,
2021

The use of neural networks to detect differences in radiographic images of patients with pneumonia and COVID-19 is demonstrated. For the optimal selection of resize and neural network architecture parameters, hyperparameters, and adaptive image brightness adjustment, precision, re-call, and f1-score metrics are used. The high values of these metrics of classification quality (> 0.91) strongly indicate a reliable difference between radiographic images of patients with pneumonia and patients with COVID-19, which opens up the possibility of creating a model with good predictive ability without involving ready-to-use complex models and without pre-training on third-party data, which is promising for the development of sensitive and reliable COVID-19 ex-press-diagnostic methods.

Цитирование

Похожие публикации

Источник

Версии

  • 1. Version of Record от 2021-01-01

Метаданные

Об авторах
  • V. Efremtsev
  • N. Efremtsev
  • E. Teterin
    Kovrov State Technological Academy named after V.A. Degtyarev
  • P. Teterin
    National Research Nuclear University MEPhI
  • E. Bazavluk
Название журнала
  • Computer Optics
Том
  • 45
Выпуск
  • 1
Страницы
  • 149-153
Финансирующая организация
  • National Research Nuclear University MEPhI
Номер гранта
  • undefined
Тип документа
  • journal article
Тип лицензии Creative Commons
  • CC BY
Правовой статус документа
  • Свободная лицензия
Источник
  • scopus