Статья

Comparative Analysis of Approaches to Prediction of Quantitative Parameters during a Pandemic

V. Kolomensiy, G. Firsov,
2021

The purpose of this paper is to study and compare several approaches to predict quantitative parameters of an epidemiological situation. These parameters change in time is not stochastic and chaotic. For instance, the number of total infection cases increases exponentially in the beginning but tends to have a linear trend later. Such processes can be modeled in a variety of ways, for example, with the SEIR model or its modifications. This paper also compares time series models, like exponential smoothing, autoregressive models, and a neural network in application to the target task. This article describes a result of a comparison of these algorithms, and an explanation of obtained results, for instance how some characteristics of target features describe a more accurate prediction of future values by the modified SEIR model, rather than an exponential smoothing process or Holt-Winters method.

Цитирование

Похожие публикации

Источник

Версии

  • 1. Version of Record от 2021-01-26

Метаданные

Об авторах
  • V. Kolomensiy
    National Research Nuclear University MEPhI
  • G. Firsov
    National Research Nuclear University MEPhI
Название журнала
  • Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2021
Страницы
  • 464-467
Номер гранта
  • undefined
Тип документа
  • journal article
Тип лицензии Creative Commons
  • CC BY
Правовой статус документа
  • Свободная лицензия
Источник
  • scopus