1. de Groot R.J., Baker S.C., Baric R., Enjuanes L., Gorbalenya A.E., Holmes K.V., et al. Family Coronaviridae. In: King A.M., Adams M.J., Carstens E.B., Lefkowitz E.J., eds. Virus Taxonomy: Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses. London: Elsevier; 2012: 806-28.
2. Львов Д.К., Альховский С.В., Колобухина Л.В., Бурцева Е.И. Этиология эпидемической вспышки COVID-19 в г. Ухань (провинция Хубэй, Китайская Народная Республика), ассоциированной с вирусом 2019-nCoV (Nidovirales, Coronaviridae, Coronavirinae, Betacoronavirus, подрод Sarbecovirus): уроки эпидемии SARS-CoV. Вопросы вирусологии. 2020; 65(1): 6-16. DOI: http://doi.org/10.36233/0507-4088-2020-65-1-6-15
3. Hamre D., Procknow J.J. A new virus isolated from the human respiratory tract. Proc. Soc. Exp. Biol. Med. 1966; 121(1): 190-3. DOI: http://doi.org/10.3181/00379727-121-30734
4. McIntosh K., Dees J.H., Becker W.B., Kapikian A.Z., Chanock R.M. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc. Natl. Acad. Sci. USA. 1967; 57(4): 933-40. DOI: https://doi.org/10.1073/pnas.57.4.933
5. Drosten C., Gunther S., Preiser W., van der Werf S., Brodt H.R., Becker S., et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 2003; 348(20): 1967-76. DOI: http://doi.org/10.1056/NEJMoa030747
6. Zaki A.M., van Boheemen S., Bestebroer T.M., Osterhaus A.D., Fouchier R.A., et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 2012; 367(19): 1814-20. DOI: https://doi.org/10.1056/NEJMoa1211721
7. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020; 382(8): 727-33. DOI: http://doi.org/10.1056/NEJMoa2001017
8. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798): 270-3. DOI: https://doi.org/10.1038/s41586-020-2012-7
9. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395(10224): 565-74. DOI: https://doi.org/10.1016/S0140-6736(20)30251-8
10. Lau S.K., Woo P.C., Li K.S., Huang Y., Tsoi H.W., Wong B.H., et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci. USA. 2005; 102(39): 14040-5. DOI: http://doi.org/10.1073/pnas.0506735102
11. Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J.H., et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005; 310(5748): 676-9. DOI: http://doi.org/10.1126/science.1118391
12. Fan Y., Zhao K., Shi Z.L., Zhou P. Bat coronaviruses in China. Viruses. 2019; 11(3): pii E210. DOI: http://doi.org/10.3390/v11030210
13. Rihtaric D., Hostnik P., Steyer A., Grom J., Toplak I. Identification of SARS-like coronaviruses in horseshoe bats (Rhinolophus hipposideros) in Slovenia. Arch. Virol. 2010; 155(4): 507-14. DOI: https://doi.org/10.1007/s00705-010-0612-5
14. Ar Gouilh M., Puechmaille S.J., Diancourt L., Vandenbogaert M., Serra-Cobo J., Lopez Roïg M., et al. SARS-CoV related Betacoronavirus and diverse Alphacoronavirus members found in western old-world. Virology. 2018; 517: 88-97. DOI: http://doi.org/10.1016/j.virol.2018.01.014
15. Balboni A., Palladini A., Bogliani G., Battilani M. Detection of a virus related to betacoronaviruses in Italian greater horseshoe bats. Epidemiol. Infect. 2011; 139(2): 216-9. DOI: http://doi.org/10.1017/S0950268810001147
16. Drexler J.F., Gloza-Rausch F., Glende J., Corman V.M., Muth D., Goettsche M., et al. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J. Virol. 2010; 84(21): 11336-49. DOI: https://doi.org/10.1128/jvi.00650-10
17. Donaldson E.F., Haskew A.N., Gates J.E., Huynh J., Moore C.J., Frieman M.B. Metagenomic analysis of the viromes of three North American bat species: viral diversity among different bat species that share a common habitat. J. Virol. 2010; 84(24): 13004-18. DOI: http://doi.org/10.1128/JVI.01255-10
18. Wang L.F., Shi Z., Zhang S., Field H., Daszak P., Eaton B.T. Review of bats and SARS. Emerg. Infect. Dis. 2006; 12(12): 1834-40. DOI: http://doi.org/10.3201/eid1212.060401
19. Tong S., Conrardy C., Ruone S., Kuzmin I.V., Guo X., Tao Y., et al. Detection of novel SARS-like and other coronaviruses in bats from Kenya. Emerg. Infect. Dis. 2009; 15(3): 482-5. DOI: http://doi.org/10.3201/eid1503.081013
20. Drexler J.F., Corman V.M., Drosten C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antiviral Res. 2014; 101: 45-56. DOI: http://doi.org/10.1016/J.ANTIVIRAL.2013.10.013
21. Haagmans B.L., Al Dhahiry S.H.S., Reusken C.B.E.M., Raj V.S., Galiano M., Myers R., et al. Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation. Lancet Infect. Dis. 2014; 14(2): 140-5. DOI: https://doi.org/10.1016/S1473-3099(13)70690-X
22. Sabir J.S., Lam T.T., Ahmed M.M., Li L., Shen Y., Abo-Aba S.E., et al. Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia. Science. 2016; 351(6268): 81-4. DOI: https://doi.org/10.1126/science.aac8608
23. Raj V.S., Farag E.A., Reusken C.B., Lamers M.M., Pas S.D., Voermans J., et al. Isolation of MERS coronavirus from dromedary camel, Qatar, 2014. Emerg. Infect. Dis. 2014; 20(8): 1339-42. DOI: http://doi.org/10.3201/eid2008.140663
24. Paden C.R., Yusof M.F.B.M., Al Hammadi Z.M., Queen K., Tao Y., Eltahir Y.M., et al. Zoonotic origin and transmission of Middle East respiratory syndrome coronavirus in the UAE. Zoonoses Public Health. 2018; 65(3): 322-33. DOI: http://doi.org/10.1111/zph.12435
25. Müller M.A., Corman V.M., Jores J., Meyer B., Younan M., Liljander A., et al. MERS coronavirus neutralizing antibodies in camels, eastern Africa, 1983-1997. Emerg. Infect. Dis. 2014; 20(12): 2093-5. DOI: https://doi.org/10.3201/eid2012.141026
26. Calisher C.H., Childs J.E., Field H.E., Holmes K.V., Schountz T. Bats: important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 2006; 19(3): 531-45. DOI: https://doi.org/10.1128/CMR.00017-06
27. Lvov D.K., Shchelkanov M.Y., Alkhovsky S.V., Deryabin P.G. Zoonotic Viruses of Northern Eurasia. Taxonomy and Ecology. London: Academic Press, Elsevier; 2015.
28. Львов Д.К. Экология вирусов. В кн.: Львов Д.К., ред. Руководство по вирусологии. Вирусы и вирусные инфекции человека и животных. М.: МИА; 2013: 66-86.
29. Li W., Moore M.J., Vasllieva N., Sui J., Wong S.K., Berne M.A., et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003; 426(6965): 450-4. DOI: https://doi.org/10.1038/nature02145
30. Ren W., Qu X., Li W., Han Z., Yu M., Zhou P., et al. Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin. J. Virol. 2008; 82(4): 1899-907. DOI: https://doi.org/10.1128/jvi.01085-07
31. Wan Y., Shang J., Graham R., Baric R.S., Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 2020; 94(7): pii e00127-20. DOI: https://doi.org/10.1128/jvi.00127-20
32. Ge X.Y., Li J.L., Yang X.L., Chmura A.A., Zhu G., Epstein J.H., et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013; 503(7477): 535-8. DOI: https://doi.org/10.1038/nature12711
33. Lau S.K., Feng Y., Chen H., Luk H.K., Yang W.H., Li K.S., et al. Severe acute respiratory syndrome (SARS) coronavirus ORF8 protein is acquired from SARS-related coronavirus from greater horseshoe bats through recombination. J. Virol. 2015; 89(20): 10532-47. DOI: https://doi.org/10.1128/jvi.01048-15
34. Hu B., Zeng L.P., Yang X.L., Ge X.Y., Zhang W., Li B., et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 2017; 13(11): e1006698. DOI: https://doi.org/10.1371/journal.ppat.1006698
35. Ge X.Y., Wang N., Zhang W., Hu B., Li B., Zhang Y.Z., et al. Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft. Virol. Sin. 2016; 31(1): 31-40. DOI: https://doi.org/10.1007/s12250-016-3713-9
36. Wang N., Li S.Y., Yang X.L., Huang H.M., Zhang Y.J., Guo H., et al. Serological evidence of bat SARS-related coronavirus infection in humans, China. Virol. Sin. 2018; 33(1): 104-7. DOI: http://doi.org/10.1007/s12250-018-0012-7
37. Lam T.T., Shum M.H., Zhu H.C., Tong Y.G., Ni X.B., Liao Y.S., et al. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature. 2020. DOI: https://doi.org/10.1038/s41586-020-2169-0
38. Zhang T., Wu Q., Zhang Z. Probable pangolin origin of SARSCoV-2 associated with the COVID-19 outbreak. Curr. Biol. 2020; 30(7): 1346-51.e2. DOI: https://doi.org/10.1016/j.cub.2020.03.022
39. Coutard B., Valle C., de Lamballerie X., Canard B., Seidah N.G., Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020; 176: 104742. DOI: https://doi.org/10.1016/j.antiviral.2020.104742
40. Simmons G., Zmora P., Gierer S., Heurich A., Pöhlmann S. Proteolytic activation of the SARS-coronavirus spike protein: Cutting enzymes at the cutting edge of antiviral research. Antiviral Res. 2013; 100(3): 605-14. DOI: https://doi.org/10.1016/j.antiviral.2013.09.028
41. Claas E.C.J., Osterhaus A.D., van Beek R., De Jong J.C., Rimmelzwaan G.F., Senne D.A., et al. Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet. 1998; 351(9101): 472-7. DOI: https://doi.org/10.1016/S0140-6736(97)11212-0
42. Corman V.M., Ithete N.L., Richards L.R., Schoeman M.C., Preiser W., Drosten C., et al. Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat. J. Virol. 2014; 88(19): 11297-303. DOI: https://doi.org/10.1128/jvi.01498-14
43. Yang L., Wu Z., Ren X., Yang F., Zhang J., He G., et al. MERS-related betacoronavirus in Vespertilio superans bats, China. Emerg. Infect. Dis. 2014; 20(7): 1260-2. DOI: https://doi.org/10.3201/eid2007.140318
44. Raj V.S., Mou H., Smits S.L., Dekkers D.H., Müller M.A., Dijkman R., et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2003; 495(7440): 251-4. DOI: https://doi.org/10.1038/nature12005
45. van Doremalen N., Miazgowicz K.L., Milne-Price S., Bushmaker T., Robertson S., Scott D., et al. Host species restriction of middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4. J. Virol. 2014; 88(16): 9220-32. DOI: https://doi.org/10.1128/JVI.00676-14
46. Львов Д.К. Рождение и развитие вирусологии – история изучения новых и возвращающихся инфекций. Вопросы вирусологии. 2012; (S1): 5-20.
47. Львов Д.К., ред. Методические рекомендации. Организация эколого-эпидемиологического мониторинга территорий Российской Федерации с целью противоэпидемической защиты населения и войск. М.; 1993.
48. Львов Д.К., Борисевич С.В., Альховский С.В., Бурцева Е.И. Актуальные подходы к анализу вирусных геномов в интересах биобезопасности. Инфекционные болезни: новости, мнения, обучение. 2019; 8(2): 96-101. DOI: https://doi.org/10.24411/2305-3496-2019-12012