Статья

Generative Adversarial Networks for Respiratory Sound Augmentation

K. Kochetov, A. Filchenkov,
2020

In this paper we propose to use generative adversarial network (GAN) for respiratory sound data augmentation. We present a GAN based approach that requires moderate amount of time and computing resources and capable to greatly increase performance of lung sound classification tasks. We also present a conditioned version of GAN, which is flexible and outperforms competitor augmentation methods. As a result, the GAN based augmentation method is able to boost RNN classifier performance by 10-15

Цитирование

Похожие публикации

Источник

Версии

  • 1. Version of Record от 2020-10-27

Метаданные

Об авторах
  • K. Kochetov
    Saint Petersburg National Research University of Information Technologies, Mechanics and Optics University ITMO
  • A. Filchenkov
    Saint Petersburg National Research University of Information Technologies, Mechanics and Optics University ITMO
Название журнала
  • ACM International Conference Proceeding Series
Страницы
  • 106-111
Финансирующая организация
  • Government Council on Grants, Russian Federation
Номер гранта
  • 08-08
Тип документа
  • journal article
Тип лицензии Creative Commons
  • CC BY
Правовой статус документа
  • Свободная лицензия
Источник
  • scopus