Статья

Global and local optimization in identification of parabolic systems

O. Krivorotko, S. Kabanikhin, S. Zhang, V. Kashtanova,
2020

The problem of identification of coefficients and initial conditions for a boundary value problem for parabolic equations that reduces to a minimization problem of a misfit function is investigated. Firstly, the tensor train decomposition approach is presented as a global convergence algorithm. The idea of the proposed method is to extract the tensor structure of the optimized functional and use it for multidimensional optimization problems. Secondly, for the refinement of the unknown parameters, three local optimization approaches are implemented and compared: Nelder-Mead simplex method, gradient method of minimum errors, adaptive gradient method. For gradient methods, the evident formula for the continuous gradient of the misfit function is obtained. The identification problem for the diffusive logistic mathematical model which can be applied to social sciences (online social networks), economy (spatial Solow model) and epidemiology (coronavirus COVID-19, HIV, etc.) is considered. The numerical results for information propagation in online social network are presented and discussed.

Цитирование

Похожие публикации

Документы

Источник

Версии

  • 1. Version of Record от 2020-12-01

Метаданные

Об авторах
  • O. Krivorotko
    Novosibirsk State University
  • S. Kabanikhin
    Novosibirsk State University
  • S. Zhang
    Tianjin University of Finance & EcoNomics
  • V. Kashtanova
    Novosibirsk State University
Название журнала
  • Journal of Inverse and Ill-Posed Problems
Том
  • 28
Выпуск
  • 6
Страницы
  • 899-913
Номер гранта
  • undefined
Тип документа
  • journal article
Тип лицензии Creative Commons
  • CC BY
Правовой статус документа
  • Свободная лицензия
Источник
  • scopus