В статье рассмотрены особенности ведения пациентов с различными неврологическими заболеваниями в период пандемии COVID-19, с учетом определения уровня риска заражения. Указана возможность увеличения риска заражения у пациентов при наличии инвалидизации, особенно с нарушением функции дыхательной и бульбарной мускулатуры, ограничением подвижности, наличием сопутствующих забо-леваний. Описаны рекомендации по лечению пациентов с инсультом, нервно-мышечными заболеваниями, воспалительными и аутоиммунными заболеваниями центральной нервной системы, в частности, рассеянного склероза и заболеваний спектра нейрооптикомиелита, а также невоспалительными заболеваниями центральной нервной системы (эпилепсия, болезнь Паркинсона, атипичный паркинсонизм, дистония, наследственная спастическая параплегия, детский церебральный паралич, доброкачественная внутричерепная гипертензия). Приведены взаимодействия препаратов для лечения COVID-19 и неврологических заболеваний. Отмечены потенциальные неврологические осложнения COVID-19: аносмия, агевзия, вирусный менингит, энцефалит, постинфекционный стволовой энцефалит, острая некротизирующая геморрагическая лейкоэнцефалопатия, синдром Гийена-Барре, миозиты. Подчеркнута важность того, что во время пандемии COVID-19, при обследовании пациентов с неврологическими заболеваниями клиницисты должны учитывать возможность наличия у пациента с COVID-19, а также рассматривать его как дифференциальный диагноз, чтобы избежать ошибок диагностики, назначить своевременное лечение и предотвратить распространение инфекции.
1. Временные методические рекомендации Минздрава России «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). М., 2020. Версия 7 (03.06.2020)». [Электронный ресурс]. URL: https://static-0.rosminzdrav.ru/system/attachments/attaches/000/050/584/original/03062020_%D0%9CR_COVID-19_v7.pdf.
2. Методические рекомендации, алгоритмы действия медицинских работников на различных этапах оказания помощи, чек-листы и типовые документы, разработанные на период наличия и угрозы дальнейшего распространения новой коронавирусной инфекции в Санкт-Петербурге. Версия 2,0 (01.06.2020). Санкт-Петербург, 2020. [Электронный ресурс]. URL: http://zdrav.spb.ru/media/komzdrav/documents/document/file/Brochure_COVID-19_24.04_%D1%81%D0%BE%D0%BA%D1%80.pdf.
3. ABN Executive in association with subspecialist Advisory groups. Association of British Neurologists Guidance on COVID-19 for people with neurological conditions, their doctors and carers. Version 6 (09.04.2020). Available from: https://cdn.ymaws.com/www.theabn.org/resource/collection/65C334C7-30FA-45DB-93AA-74B3A3A20293/ABN_Neurology_COVID-19_Guidance_v6_9.4.20_FP.pdf
4. Interaction checker. COVID-19 drug interaction. University of Liverpool. Available from: https://www.covid19druginteractions.org
5. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Zh et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: aretrospective cohort study. Lancet. 2020;395(10229):1054-1062. doi:10.1016/S0140-6736(20)30566-3
6. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020:77(6)1-9. doi:10.1001/jamaneurol.2020.1127
7. Benussi A, Pilotto A, Premi E, Libri I, Giunta M, Agosti C et al. Clinical characteristics and outcomes of inpatients with neurologic disease and COVID-19 in Brescia, Lombardy, Italy. Neurology. 2020. [Ahead of print, published online May 22, 2020]. doi:10.1212/WNL.0000000000009848.
8. Morassi M, Bagatto D, Cobelli M, D’Agostini S, Gigli GL, Bna C et al. Stroke in patients with SARS-CoV-2 infection: case series. J Neurol. 2020. [Ahead of print, published online May 20, 2020]. doi:10.1007/s00415-020-09885-2
9. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020; e201017. doi:10.1001/jamacardio.2020.1017
10. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094-1099. doi:10.1111/jth.14817
11. Iba T, Levy JH, Warkentin TE, Thachil J, van der Poll T, Levi M. Diagnosis and management of sepsis-induced coagulopathy and disseminated intravascular coagulation. J Thromb Haemost. 2019;17(11):1989-1994. doi:10.1111/jth.14578
12. Wang J, Hajizadeh N, Moore EE, McIntyre RC, Moore PK, Veress LA et al. Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): a caseseries. J Thromb Haemost. 2020;18(7):1752-1755. doi:10.1111/jth.14828
13. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, hostvirus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020:11(7):995-998. doi:10.1021/acschemneuro.0c00122
14. Doobay MF, Talman LS, Obr TD, Tian X, Davisson RL, Lazartigues E. Differential expression of neuronal ACE 2 in transgenic mice with overexpression of the brain renin-angiotensin sys-tem. Am J Physiol Regul Integr Comp Physiol. 2007;292(1): R 373-R 381. doi:10.1152/ajpregu.00292.2006
15. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450-454. doi:10. 1038/nature02145
16. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W et al. A pneumonia outbreak associated with a new coronavirus of probable at origin. Nature. 2020;579(7798):270-273. doi: 10.1038/s41586-020-2012-7
17. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S et al. SARS-CoV-2 cell entry depends on ACE 2 and TMPRSS 2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-280.e8. doi:10.1016/j.cell.2020.02.052
18. Chen J, Xiao X, Chen S, Zhang C, Chen J, Yi D et al. Angiotensin-converting enzyme 2 priming enhances the function of endothelialprogenitor cells and their therapeutic efficacy. Hypertension. 2013;61(3):681-689. doi:10.1161/HYPERTENSIONAHA.111.00202
19. Chen J, Zhao Y, Chen S, Wang J, Xiao X, Ma X et al. Neuronalover-expression of ACE 2 protects brain from ischemiainduced damage. Neuropharmacology. 2014;79:550-558. doi:10.1016/j.neuropharm.2014.01.004
20. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may be at least partially responsible for the respiratory failure of COVID-19 patients. J Med Virol. 2020:92(6):552-555. doi:10.1002/jmv.25728
21. Мартынов М. Ю., Шамалов Н. А., Хасанова Д. Р, Вознюк И.А., Алашеев А. М., Харитонова Т. В. и др. Ведение пациентов с острыми нарушениями мозгового кровообращения в контексте пандемии COVID-19. Временные методические рекомендации. Версия 2 (16.04.2020). [Электронный ресурс]. URL: http://education.almazovcentre.ru/wp-content/uploads/2020/04/VR-Vedenie-patcientov-s-onmk-v-kontekste-pandemii-COVID-19.pdf.
22. Baracchini C, Pieroni A, Viaro F, Cianci V, Cattelan AM, Tiberio I et al. Acute stroke management pathway during Coronavirus-19 pandemic. Neurol Sci. 2020;41(5): 1003-1005. doi: 10.1007/s10072-020-04375-9
23. Jin H, Hong C, Chen S, Zhou Y, Wang Y, Mao L et al. Consensus for prevention and management of coronavirus disease 2019 (COVID-19) for neurologists. Stroke Vasc Neurol. 2020;5(2):146-151. doi:10.1136/svn-2020-000382
24. Monteil V, Kwon H, Prado P, Hagelkruys A, Wimmer RA. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE 2. 2020;181(4):905-913. e7. doi:10. 1016/j.cell.2020.04.004
25. Hess DC, Eldahshan W, Rutkowski E. COVID-19-Related Stroke. Transl Stroke Res. 2020;11(3):322-325. doi:10.1007/s12975-020-00818-9
26. Detailed recommendations for interactions with experi-mental COVID-19 antiviral therapies. Updated 04 June 2020. Available from: https://www.covid19-druginteractions.org
27. Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E et al. Global COVID-19 Thrombosis Collaborative Group, Endorsed by the ISTH, NATF, ESVM, and the IUA, Supported by the ESC Working Group on Pulmonary Circulation and Right Ventricular Function. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;75(23):2950-2973. doi:10.1016/j.jacc.2020.04.031
28. Gummi RR, Kukulka NA, Deroche CB, Govindarajan R. Factors associated with acuteexacerbations of myasthenia gravis. Muscle Nerve. 2019;60(6):693-699. doi:10.1002/mus.26689
29. Guidelines for the neuromuscular service, national hospital for neurology and neurosurgery general health advice (from DHSC/ PHE/FCO, updated 23 March 2020). Available from: https://www.ucl.ac.uk/centre-for-neuromuscular-diseases/sites/centre-forneuromuscular-diseases/files/coronavirus_nd_message_6_4.pdf
30. Guidon AC, Amato AA. COVID-19 and neuromuscular disorders. Neurology. 2020;94(22):959-969. doi:10.1212/WNL.0000000000009566
31. International MG/COVID-19 Working Group. Jacob S, Muppidi S, Guidon A, Guptill J, Hehir M, Howard JF et al. Guidance for the management of myasthenia gravis (MG) and Lambert-Eaton myasthenic syndrome (LEMS) during the COVID-19 pandemic. J Neurol Sci. 2020;412:116803. doi:10.1016/j.jns.2020.116803
32. Sole G, Salort-Campana E, Pereon Y, Stojkovic T, Wahbi K, Cintas P et al. FILNEMUS COVID-19 study group. Guidance for the care of neuromuscular patients during the COVID-19 pandemic outbreak from the French Rare Health Care for Neuromuscular Diseases Network. Rev Neurol (Paris). 2020;176(6):507-515. doi:10. 1016/j.neurol.2020.04.004
33. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi:10.1016/S01406736(20)30183-5
34. Zhao H, Shen D, Zhou H, Liu J, Chen S. Guillain-Barre syndrome associated withSARS-CoV-2 infection: causality or coincidence? Lancet Neurol. 2020;19(5):383-384. doi:10.1016/S1474-4422(20)30109-5
35. Camdessanche JP, Morel J, Pozzetto B, Paul S, Tholance Y, Botelho-Nevers E. COVID-19 may induce Guillain-Barre syndrome. Rev Neurol (Paris). 2020;176(6):516-518. doi:10.1016/j.neurol.2020.04.003
36. Sedaghat Z, Karimi N. Guillain-Barre syndrome associated with COVID-19 infection: a case report. J Clin Neurosci. 2020;76:233-235. doi:10.1016/jjocn.2020.04.062.
37. Toscano G, Palmerini F, Ravaglia S, Ruiz L, Invernizzi P, Cuzzoni MG et al. Guillain-Barre syndrome associated with SARSCoV-2. N Engl J Med. 2020;382(26):2574-2576. doi:10.1056/NEJMc2009191.
38. Otmani H, Moutawakil B, Rafai MA, Benna N, Kettani C, Soussi M et al. Covid-19 and Guillain-Barre Syndrome: More Than a Coincidence! Rev Neurol (Paris). 2020;176(6):518-519. doi:10. 1016/j.neurol.2020.04.007
39. Benveniste O, Longuet P, Duval X, Le Moing V, Leport C, Vilde JL. Two episodes of acute renal failure, rhabdomyolysis, and severe hepatitis in an AIDS patient successively treated with ritonavir and indinavir. Clin Infect Dis. 1999;28(5):1180-1181. doi:10.1086/517777
40. Mah Ming JB, Gill MJ. Drug-induced rhabdomyolysis after concomitant use of clarithromycin, atorvastatin, and lopinavir/ritonavir in a patient with HIV. AIDS Patient Care STDS. 2003;17(5):207-210. doi:10.1089/108729103321655854
41. Eadie MJ, Ferrier TM. Chloroquine myopathy. J Neurol Neurosurg Psychiatry. 1966;29(4):331-337. doi:10.1136/jnnp.29.4.331
42. Joyce E, Fabre A, Mahon N. Hydroxychloroquine cardiotoxicity presenting as a rapidly evolving biventricular cardiomyopathy: key diagnostic features and literaturereview. Eur Heart J Acute Cardiovasc Care. 2013;2(1):77-83.
43. Estes ML, Ewing-Wilson D, Chou SM, Mitsumoto H, Hanson M, Shirey E et al. Chloroquine neuromyotoxicity: clinical and pathological perspective. Am J Med. 1987;82(3):447-455.
44. Doughty CT, Amato AA. Toxic myopathies. Continuum (Minneap Minn). 2019;25(6):1712-1731. doi: 10.1212/CON.0000000000000806
45. Jallouli M, Saadoun D, Eymard B, Leroux G, Haroche J, Le Thi Huong D et al. The association of systemic lupus erythematosus and myasthenia gravis: a series of 17 cases, with a special focus on hydroxychloroquine use and a review of the literature. J Neurol. 2012;259(7):1290-1297. doi:10.1007/s00415-011-6335-z
46. Gummi RR, Kukulka NA, Deroche CB, Govindarajan R. Factors associated with acute exacerbations of myasthenia gravis. Muscle Nerve. 2019;60(6):693-699. doi:10.1002/mus.26689
47. Медицинская ассоциация врачей и центров рассеянного склероза и других нейроиммунологических заболеваний (МАВРС). Рекомендации по тактике ведения пациентов с рас-сеянным склерозом, в период пандемии коронавирусной инфекции COVID-19 (22.03.2020). [Электронный ресурс]. URL: https://www.centrems.com/downloads/MAVRS-COVID-19.pdf.
48. Бойко А. Н., Лащ Н. Ю., Спирин Н. Н., Сиверцева С. А., Мартынов М. Ю. Ведение пациентов с рассеянным склерозом в условиях пандемии COVID-19. Временные методические рекомендации. Версия 1. (19.04.2020). [Электронный ресурс]. URL: https://www.ructrims.org/files/2020/%D0%A0%D0%A1_%D0%B8_COVID19_%D0%A0%D0%B5%D0%BA%D0%BE%D0%BC%D0%B5%D0%BD%D0%B4%D0%B0%D1%86%D0%B8%D0%B8_%D0%92%D0%9E%D0%9D.pdf.
49. Giovannoni G, Hawkes C, Lechner-Scott J, Levy M, Waubant E, Gold J. The COVID-19 pandemic and the use of MS disease-modifying therapies. Mult Scler Relat Disord. 2020;39:102073. doi:10.1016/j.msard.2020.102073
50. Brownlee W, Bourdette D, Broadley S, Killestein J, Ciccarelli O. Treating multiple sclerosis and neuromyelitis optica spectrum disorder during the COVID-19 pandemic. Neurology. 2020;94(22):949-952. doi:10.1212/WNL.0000000000009507
51. Baker D, Amor S, Kang AS, Schmierer K, Giovannoni G. The underpinning biology relating to multiple sclerosis disease modifying treatments during the COVID-19 pandemic. Mult Scler Relat Disord. 2020;43:102174. doi:10.1016/j.msard.2020.102174
52. Guidance for health professionals managing neuromyelitis optica spectrum disorder (nmosd) in response to the threat of widespread covid-19 infection. Available from: http://www.nmouk.nhs.uk/healthcare-professionals/covid-19-guidance-forprofessionals
53. NMOSD UK Service. Latest Covid-19 information for our patients. Posted on: June 1st, 2020 by nmouknhs. Available from: http://www.nmouk.nhs.uk/latest-covid-19-information-forour-patients
54. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, Host-Virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020;11(7):995-998. doi:10.1021/acschemneuro.0c00122
55. Li YC, Bai WZ, Hashikawa T. Tsutomu Hashikawa the neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92(6):552-555. doi:10.1002/jmv.25728
56. Nath A. Neurologic complications of coronavirus infections. Neurology. 2020;94(19):809-810. doi:10.1212/WNL.0000000000009455
57. Hepburn M, Mullaguri N, George P, Hantus S, Punia V, Bhimraj A et al. Acute Symptomatic Seizures in Critically Ill Patients with COVID-19: Is There an Association? Neurocrit Care. 2020. [Ahead of print, published online May 28, 2020]. doi:10.1007/s12028-020-01006-1
58. French JA, Brodie MJ, Caraballo R, Devinsky O, Ding D, Jehi L et al. Keeping people with epilepsy safe during the COVID-19 pandemic. Neurology. 2020;94(23):1032-1037. doi: 10.1212/WNL.0000000000009632
59. Sodhi M, Etminan M. Safety of ibuprofen in patients with COVID-19: causal or confounded? Chest. 2020;158(1):55-56. doi:10. 1016/j.chest.2020.03.040
60. Rey NL, Wesson DW, Brundin P. The olfactory bulb as the entry site for prion-like propagation in neurodegenerative diseases. Neurobiol Dis. 2018;109(Pt B):226-248. doi:10.1016/j.nbd.2016.12.013
61. Tulisiak CT, Mercado G, Peelaerts W, Brundin L, Brundin P. Can infections trigger alpha-synucleinopathies? Prog Mol Biol Transl Sci. 2019;168:299-322. doi:10.1016/bs.pmbts.2019.06.002
62. Jo T, Yasunaga H, Michihata N, Sasabuchi Y, Hasegawa W, Takeshima H et al. Influence of Parkinsonism on outcomes of elderly pneumonia patients. Parkinsonism Relat Disord. 2018;54:25-29. doi:10.1016/j.parkreldis.2018.03.028
63. Lubomski M, Rushworth RL, Tisch S. Hospitalisation and comorbidities in Parkinson’s Disease: a Large Australian Retrospective Study. J Neurol Neurosurg Psychiatry. 2015;86(3):32430. doi:10.1136/jnnp-2014-307822
64. Cilia R, Bonvegna S, Straccia G, Andreasi NG, Elia AE, Romito LM et al. Effects of COVID-19 on Parkinson’s Disease clinical features: a Community-Based Case-Control Study. Mov Disord. 2020. [Ahead of print, published online May 25, 2020]. doi:10.1002/mds.28170
65. Papa SM, Brundin P, Fung VSC, Kang UJ, Burn DJ, Colosimo C et al. MDS-Scientific Issues Committee. Impact of the COVID-19 Pandemic on Parkinson’s Disease and movement disorders. Mov Disord. 2020;35(5):711-715. doi:10.1002/mds.28067
66. Hribar CA, Cobbold PH, Church FC. Potential role of vitamin D in the elderly to resist COVID-19 and to slow progression of Parkinson’s Disease. 2020;10(5): E 284. doi:10.3390/brainsci10050284
67. Rejdak K, Grieb P. Adamantanes might be protective from COVID-19 in patients with neurological diseases: multiple sclerosis, parkinsonism and cognitive impairment. Mult Scler Relat Disord. 2020;42:102163. doi:10.1016/j.msard.2020.102163
Адрес: 115114, Москва, ул. Летниковская, д. 4, стр.5, офис 2.4
тел.\факс: +7(499)754-99-94, доб. 502
e-mail: covid19@neicon.ru
Проект реализуется с использованием гранта Президента Российской Федерации на развитие гражданского общества, предоставленного Фондом президентских грантов.
Содержимое сайта, если не указано иное, опубликовано в соответствии с лицензией Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная (CC BY 4.0). Права на материалы, переданные партнерами проекта, принадлежат их правообладателям.
© 2025 NEICON