Статья

Principles for Development of Predictive Stability Models of Social and Economic Systems on the basis of DTW

A. Kislyakov, N. Tikhonuyk,
2021

This paper presents the concept for the development of predictive models of social and economic system evolution providing the necessity of combining solution search optimization algorithms and methods of regressive and clustering analysis for the adequate description of system attribute space. The rationale for the selection of metrics on the basis of a dynamic time-warping algorithm which allows to carry out clustering of the system attribute space. The example of solution of description task for COVID-19 pandemic development attribute for a particular country or region is considered. The developed concept formulates main provisions and indicators that can be used in order to increase the algorithm efficiency for the development of predictive complicated system models. © The Authors, published by EDP Sciences, 2020.

Цитирование

Похожие публикации

Источник

Версии

  • 1. Version of Record от 2021-04-27

Метаданные

Об авторах
  • A. Kislyakov
    Russian Academy of National Economy and Public Administration, Vladimir branch, Gorky Str., 59a, Vladimir, 600017, Russian Federation
  • N. Tikhonuyk
Название журнала
  • E3S Web of Conferences
Том
  • 208
Страницы
  • -
Ключевые слова
  • Clustering algorithms; Algorithm efficiency; Clustering analysis; Complicated systems; Dynamic time warping algorithms; Predictive models; Social and economic systems; Solution searches; Stability models; Predictive analytics
Издатель
  • EDP Sciences
Тип документа
  • Conference Paper
Тип лицензии Creative Commons
  • CC
Правовой статус документа
  • Свободная лицензия
Источник
  • scopus