1. Grasselli G., Zangrillo A., Zanella A., et al. COVID-19 Lombardy ICU Network. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323(16):1574-81. DOI:10.1001/jama.2020.5394.
2. Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 5 (08.04.2020) [цитировано 15.04.2020]. Доступно на: https://static-1.rosminzdrav.ru/system/attachments/attaches/000/049/951/original/09042020_%D0%9C%D0%A0_COVID-19_v5.pdf.
3. Gautret F., Lagier J.C., Parola P., et al. Hydroxychloroquine and azithromycin as a treatment of COVID19: results of an open label non-randomized clinical trial. Int J Antimicrob Agents. 2020 Mar 20;105949. DOI:10.1016/j.ijantimicag.2020.105949.
4. Plantone D., Koudriavtseva T. Current and Future Use of Chloroquine and Hydroxychloroquine in Infectious, Immune, Neoplastic, and Neurological Diseases: A Mini-Review. Clin Drug Investig. 2018;38(8):653-71. DOI:10.1007/s40261-018-0656-y.
5. Хлорохин. Инструкция по применению лекарственного препарата для медицинского применения [цитировано 15.04.2020. Доступно на: http://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=3a670ed0-fd8c-43f6-9001-46d752ea1a4e&t=.
6. Haeusler I.L., Chan X.H.S., Guerin PJ., White N.J. The arrhythmogenic cardiotoxicity of the quinoline and structurally related antimalarial drugs: a systematic review. BMC Med. 2018;16(1):200. DOI:10.1186/s12916-018-1188-2.
7. Blignaut M., Espach Y., van Vuuren M., et al. Revisiting the Cardiotoxic Effect of Chloroquine. Cardiovasc Drugs Ther. 2019;33(1):1-11. DOI:10.1007/s10557-018-06847-9.
8. Yogasundaram H., Hung W., Paterson I.D., et al. Chloroquine-induced cardiomyopathy: a reversible cause of heart failure. ESC Heart Fail. 2018;5(3):372-75. DOI:10.1002/ehf2.12276.
9. Гидроксихлорохин. Инструкция по применению лекарственного препарата для медицинского применения [цитировано 15.04.2020]. Доступно на: http://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=252eb76a-5559-48aa-83be-cd1fa8341e9d&t=.
10. Chatre C., Roubille F., Vernhet H., et al. Cardiac Complications Attributed to Chloroquine and Hydroxychloroquine: A Systematic Review of the Literature. Drug Saf. 2018;41(10):919-31. DOI:10.1007/s40264-018-0689-4.
11. Dogar M.U., Shah N.N., Ishtiaq S., et al. Hydroxychloroquine-induced restrictive cardiomyopathy: a case report. Postgrad Med J. 2018;94(1109):185-6. DOI:10.1136/postgradmedj-2017-135236.
12. Mollerach F.B., Scolnik M., Catoggio L.J., et al. Causes of fetal third-degree atrioventricular block and use of hydroxychloroquine in pregnant women with Ro/La antibodies. Clin Rheumatol. 2019;38(8):2211-7. DOI:10.1007/s10067-019-04556-8.
13. Lewis J., Gregorian T., Portillo I., Goad J. Drug interactions with antimalarial medications in older travelers: a clinical guide. J Travel Med. 2020;27(1).pii:taz089. DOI:10.1093/jtm/taz089.
14. Polgreen L.A., Riedle B.N., Cavanaugh J.E., et al. Estimated Cardiac Risk Associated with Macrolides and Fluoroquinolones Decreases Substantially When Adjusting for Patient Characteristics and Comorbidities. J Am Heart Assoc. 2018;7(9).pii:e008074. DOI:10.1161/JAHA.117.008074.
15. Postma D.F., Spitoni C., van Werkhoven C.H., et al. Cardiac events after macrolides or fluoroquinolones in patients hospitalized for community-acquired pneumonia: post-hoc analysis of a cluster-randomized trial. BMC Infect Dis. 2019;19(1):17. DOI:10.1186/s12879-018-3630-7.
16. Trifiro G., de Ridder M., Sultana J., et al. Use of azithromycin and risk of ventricular arrhythmia. CMAJ. 2017;189(15):E560-E568. DOI:10.1503/cmaj.160355.
17. Yang Z., Prinsen J.K., Bersell K.R., et al. Azithromycin Causes a Novel Proarrhythmic Syndrome. Circ Arrhythm Electrophysiol. 2017;10(4).pii:e003560. DOI:10.1161/CIRCEP.115.003560.
18. Lee H., Yun K.W., Lee H.J., Choi E.H. Antimicrobial therapy of macrolide-resistant Mycoplasma pneumoniae pneumonia in children. Expert Rev Anti Infect Ther. 2018;16(1):23-34. DOI:10.1080/14787210.2018.1414599.
19. Midouni Ayadi B., Mehiri E., Draoui H., et al. Phenotypic and molecular characterization of macrolide resistance mechanisms among Streptococcus pneumoniae isolated in Tunisia. J Med Microbiol. 2020;69(4):505-20. DOI:10.1099/jmm.0.001151.
20. Rodriguez N., Mondeja B., Sardinas R., et al. First detection and characterization of macrolide-resistant Mycoplasma pneumoniae strains in Cuba. Int J Infect Dis. 2019;80:115-7. DOI:10.1016/j.ijid.2018.12.018.
21. Kastrin T, Paragi M., Erculj V., et al. Lack of correlation between reduced outpatient consumption of macrolides and macrolide resistance of invasive Streptococcus pneumoniae isolates in Slovenia during 1997-2017. J Glob Antimicrob Resist. 2019;16:242-8. DOI:10.1016/j.jgar.2018.10.022.
22. Tanaka T., Oishi T., Miyata I., et al. Macrolide-Resistant Mycoplasma pneumoniae Infection, Japan, 2008-2015. Emerg Infect Dis. 2017;23(10):1703-6. DOI:10.3201/eid2310.170106.
23. Loconsole D., De Robertis A.L., Mallamaci R., et al. First Description of Macrolide-Resistant Mycoplasma pneumoniae in Adults with Community-Acquired Pneumonia in Italy. Biomed Res Int. 2019;2019:7168949. DOI:10.1155/2019/7168949.
24. Noori Goodarzi N., Pourmand M.R., Arfaatabar M., et al. First Detection and Characterization of Macrolide-Resistant Mycoplasma pneumoniae from People with Community-Acquired Pneumonia in Iran. Microb Drug Resist. 2020;26(3):245-50. DOI:10.1089/mdr.2019.0223.
25. Мефлохин (Mefloquinum): Инструкция по применению лекарственного препарата для медицинского применения [цитировано 15.04.2020]. Доступно на: http://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=74e927b6-5498-4cf4-acf7-5dbe2ad5fa20&t=.
26. Honegr K., DuKcek K., Mirovsky P., Hozak A. Mefloquine in the treatment of malaria--initial experience in Czechoslovakia. Cesk Epidemiol Mikrobiol Imunol. 1987;36(5):292-6.
27. Jensen J.J. Mefloquine: neuropsychiatric adverse effects are often severe and persistent long after withdrawal of the drug. Ugeskr Laeger. 1998;160(16):2413.
28. FDA Drug Safety Communication: FDA approves label changes for antimalarial drug mefloquine hydrochloride due to risk of serious psychiatric and nerve side effects [cited by Apr 15, 2020]. Available from: https://www.fda.gov/media/86285/download.
29. Tickell-Painter M., Saunders R., Maayan N., et al. Deaths and parasuicides associated with mefloquine chemoprophylaxis: A systematic review. Travel Med Infect Dis. 2017;20:5-14. DOI:10.1016/j.tmaid.2017.10.011.
30. Tickell-Painter M., Maayan N., Saunders R., et al. Mefloquine for preventing malaria during travel to endemic areas. Cochrane Database Syst Rev. 2017;10:CD006491. DOI:10.1002/14651858.CD006491.pub4.
31. Fan H.H., Wang L.Q., Liu W.L., et al. Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus (2019-nCoV) related coronavirus model. Chin Med J (Engl). 2020;133(9):1051-6. DOI:10.1097/CM9.0000000000000797.
32. ФМБА России: доказана противовирусная активность «Мефлохина» в отношении возбудителя COVID-19 [цитировано 15.04.2020]. Доступно на: http://fmbaros.ru/press-tsentr/novosti/detail/?ELEMENT_ID=38239.
33. Kim I.C., Kim J.Y., Kim H.A., Han S. COVID-19-related myocarditis in a 21-year-old female patient. Eur Heart J. 2020;41(19):1859. DOI:10.1093/eurheartj/ehaa288.
34. Guo T., Fan Y., Chen M., et al. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;e201017. DOI:10.1001/jamacardio.2020.1017.
35. Временные методические рекомендации. лекарственная терапия острых респираторных вирусных инфекций (ОРВИ) в амбулаторной практике в период эпидемии COVID-19. Версия 1 (12.04.2020) [цитировано 15.04.2020]. Доступно на: https://static-3.rosminzdrav.ru/system/attachments/attaches/000/049/991/original/RESP_REC_V1.pdf.
36. Sanders J.M., Monogue M.L., Jodlowski T.Z., Cutrell J.B. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA. 2020;323(18):1824-36. DOI:10.1001/jama.2020.6019.
37. Agostini M.L., Andres E.L., Sims A.C., et al. Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. mBio. 2018 Mar 6;9(2).pii:e00221-18. DOI:10.1128/mBio.00221-18.
38. Wang M., Cao R., Zhang L., et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269-71. DOI:10.1038/s41422-020-0282-0.
39. Furuta Y., Komeno T., Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(7):449-63. DOI:10.2183/pjab.93.027.
40. Delang L., Abdelnabi R., Neyts J. Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antiviral Res. 2018;153:85-94. DOI:10.1016/j.antiviral.2018.03.003.
41. Yu L., et al. Handbook of COVID-19 Prevention and Treatment. [cited by Apr 15, 2020]. Available from: https://gmcc.alibabadoctor.com/prevention-manual.
42. Клинические рекомендации. Внебольничная пневмония (2018) [цитировано 15.04.2020]. Доступно на: http://spulmo.ru/obrazovatelnye-resursy/federalnye-klinicheskie-rekomendatsii/.
43. Красновский А.Л., Григорьев С.П., Алехин А.И., Потапов В.Н. Применение подогреваемой кислородно-гелиевой смеси в комплексном лечении пациентов с внебольничной пневмонией. Клиническая Медицина. 2013;(91)5:38-41.
44. Протокол лечения термическим гелиоксом (t-He/O2) больных с синдромом острой и обострением хронической дыхательной недостаточности. Москва, 2018. [цитировано 15.04.2020]. Доступно на: http://spulmo.ru/download/%D0%2018.01.19,%2017.15).pdf.