Статья

On the dynamical modeling of COVID-19 involving Atangana–Baleanu fractional derivative and based on Daubechies framelet simulations

M. Mohammad, A. Trounev,
2021

In this paper, we present a novel fractional order COVID-19 mathematical model by involving fractional order with specific parameters. The new fractional model is based on the well-known Atangana–Baleanu fractional derivative with non-singular kernel. The proposed system is developed using eight fractional-order nonlinear differential equations. The Daubechies framelet system of the model is used to simulate the nonlinear differential equations presented in this paper. The framelet system is generated based on the quasi-affine setting. In order to validate the numerical scheme, we provide numerical simulations of all variables given in the model. © 2020

Цитирование

Похожие публикации

Документы

Источник

Версии

  • 1. Version of Record от 2021-04-27

Метаданные

Об авторах
  • M. Mohammad
    Zayed University, United Arab Emirates
  • A. Trounev
    Kuban State Agrarian University, Russian Federation
Название журнала
  • Chaos, Solitons and Fractals
Том
  • 140
Страницы
  • -
Ключевые слова
  • Differential equations; Dynamical model; Fractional derivatives; Fractional model; Fractional order; Nonlinear differential equation; Numerical scheme; Quasi-affine; Singular kernel; Nonlinear equations
Издатель
  • Elsevier Ltd
Тип документа
  • journal article
Тип лицензии Creative Commons
  • CC BY-NC-ND
Правовой статус документа
  • Свободная лицензия
Источник
  • scopus