Дорогие друзья, коллеги! За последние два месяца число заболевших новой коронавирусной инфекцией стало уменьшаться, а количество публикаций, посвященных накопленному опыту диагностики, ведения и реабилитации, все увеличивается и позволяет нам, обмениваясь знаниями, оптимизировать свою тактику. В предлагаемом обзоре мы представляем обновленные данные о коронавирусе SARS-CoV-19 и болезни, которую он вызывает.
1. Ogimi C, Kim YJ, Martin ET, et al. What’s New With the Old Coronaviruses? J Pediatric Infect Dis Soc. 2020;9(2):210–217. doi: 10.1093/jpids/piaa037.
2. Jiang S, Shi Z, Shu Y, et al. A distinct name is needed for the new coronavirus. Lancet. 2020;395(10228):949. doi: 10.1016/S0140-6736(20)30419-0.
3. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage В betacoronaviruses. Nat Microbiol. 2020;5(4):562–569. doi: 10.1038/s41564-020-0688-y.
4. Zhou P, Yang X, Wang X, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi: org/10.1038/s41586-020-2012-7.
5. Khera R, Clark C, Lu Y, et al. Association of Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers with the Risk of Hospitalization and Death in Hypertensive Patients with Coronavirus Disease-19. medRxiv. 2020;2020.05.17.20104943. doi: 10.1101/2020.05.17.20104943.
6. Jackson DJ, Busse WW, Bacharier LB, et al. Association of respiratory allergy, asthma, and expression of the SARS-CoV-2 receptor ACE2. J Allergy Clin Immunol. 2020;146(1):203–206.e3. doi: 10.1016/j.jaci.2020.04.009.
7. Kimura H, Francisco D, Conway M, et al. Type 2 inflammation modulates ACE2 and TMPRSS2 in airway epithelial cells. J Allergy Clin Immunol. 2020;146(1):80–88.e8. doi: 10.1016/j.jaci.2020.05.004.
8. Zang R, Gomez Castro MF, Mccune BT, et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol. 2020;5(47): eabc3582. doi: 10.1126/sciimmunol.abc3582.
9. Gemmati D, Bramanti B, Serino ML, et al. COVID-19 and Individual Genetic Susceptibility/Receptivity: Role of ACE1/ACE2 Genes, Immunity, Inflammation and Coagulation. Might the Double X-chromosome in Females Be Protective against SARS-CoV-2 Compared to the Single X-Chromosome in Males? Int J Mol Sci. 2020;21(10):3474. doi: 10.3390/ijms21103474.
10. Dong Y, Мо Х, Нu Y, et al. Epidemiology of COVID-19 Among Children in China. Pediatrics. 2020; 145(6): e20200702. doi: 10.1542/peds.2020-0702.
11. Du Z, Xu X, Wu Y, et al. Serial Interval of COVID-19 among Publicly Reported Confirmed Cases. Emerg Infect Dis. 2020;26(6):1341–1343. doi: 10.3201/eid2606.200357.
12. Wu P, Duan F, Luo C, et al. Characteristics of ocular findings of patients with Coronavirus Disease 2019 (COVID-19) in Hubei Province, China. JAMA Ophthalmol. 2020;138(5):575–578. doi: 10.1001/jamaophthalmol.2020.1291.
13. Recommendations for Investigational COVID-19 Convalescent Plasma [updated May 1, 2020; cited June 29, 2020]. Available online: https://www.fda.gov/vaccines-blood-biologics/investigational-new-drug-ind-or-device-exemption-ide-process-cber/recommendations-investigational-covid-19-convalescent-plasma.
14. Shen K, Yang Y. Diagnosis and treatment of 2019 novel coronavirus infection in children: a pressing issue. World J Pediatr. 2020;16(3):219–221. doi: 10.1007/s12519-020-00344-6.
15. Molloy EJ, Bearer CF. COVID-19 in children and altered inflammatory responses. Pediatr Res. 2020 Apr 3. Online ahead of print. doi: 10.1038/s41390-020-0881-y.
16. Cristiani L, Mancino E, Matera L, et al. Will children reveal their secret? The coronavirus dilemma. Eur Respir J. 2020;55(4):2000749. doi: 10.1183/13993003.00749-2020.
17. Xu Y, Li X, Zhu B, et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat Med. 2020;26(4):502–505. doi: 10.1038/s41591-020-0817-4.
18. Zhang J, Wang S, Xue Y. Fecal specimen diagnosis 2019 novel coronavirus–infected pneumonia. J Med Virol. 2020;92(6):680–682. doi: org/10.1002/jmv.25742.
19. Zheng M, Gao Y, Wang G, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020;17(5):533–535. doi: 10.1038/s41423-020-0402-2.
20. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034. doi: 10.1016/S0140-6736(20)30628-0.
21. PICS Statement: Increased number of reported cases of novel presentation of multisystem inflammatory disease [updated April 27, 2020; cited June 29, 2020]. Available online: https://picsociety.uk/wp-content/uploads/2020/04/PICS-statement-re-novel-KD-C19-presentation-V-2-27042020.pdf.
22. Riphagen S, Gomez X, Gonzalez-Martinez C, et al. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. 2020;395(10237):1607–1608. doi: 10.1016/S0140-6736(20)31094-1.
23. Guidance: Paediatric multisystem inflammatory syndrome temporally associated with COVID-19 [updated May, 2020; cited June 29, 2020]. Available online: https://www.rcpch.ac.uk/sites/default/files/2020-05/COVID-19-Paediatric-multisystem-%20inflammatory%20syndrome-20200501.pdf.
24. 2020 Health Alert #13: Pediatric Multi-System Inflammatory Syndrome Potentially Associated with COVID-19 [updated May 4, 2020; cited June 29, 2020]. Available online: https://www1.nyc.gov/assets/doh/downloads/pdf/han/alert/2020/covid-19-pediatric-multi-system-inflammatory-syndrome.pdf.
25. Jenco M. CDC details COVID-19-related inflammatory syndrome in children [updated May 14, 2020; cited June 29, 2020]. Available online: https://www.aappublications.org/news/2020/05/14/covid19inflammatory051420.
26. Jenco M. Experts shed more light on COVID-19-related inflammatory syndrome in children [updated May 20, 2020; cited June 29, 2020]. Available online: https://www.aappublications.org/news/2020/05/20/covid19inflammatorysyndrome052020.
27. Greene AG, Saleh M, Roseman E, Sinert R. Toxic shock-like syndrome and COVID-19: A case report of multisystem inflammatory syndrome in children (MIS-C). Am J Emerg Med. 2020 Jun 6;S0735-6757(20)30492-7. Online ahead of print. doi: 10.1016/j.ajem.2020.05.117.
28. Schnapp A, Abulhija H, Maly A, et al. Introductory histopathological findings may shed light on COVID-19 paediatric hyperinflammatory shock syndrome. J Eur Acad Dermatol Venereol. 2020 Jun 13;10.1111/jdv.16749. Online ahead of print. doi: 0.1111/jdv.16749.
29. Waltuch T, Gill P, Zinns LE, et al. Features of COVID-19 post-infectious cytokine release syndrome in children presenting to the emergency department. Am J Emerg Med. 2020 May 23;S0735-6757(20)30403-4. Online ahead of print. doi: 10.1016/j.ajem.2020.05.058.
30. Toubiana J, Poirault C, Corsia A, et al. Kawasaki-like multisystem inflammatory syndrome in children during the covid-19 pandemic in Paris, France: prospective observational study. BMJ. 2020;369:m2094. doi: 10.1136/bmj.m2094.
31. Grimaud M, Starck J, Levy M, et al. Acute myocarditis and multisystem inflammatory emerging disease following SARS-CoV-2 infection in critically ill children. Ann Intensive Care. 2020;10:69. doi: 10.1186/s13613-020-00690-8.
32. Mazza S, Sorce A, Peyvandi F, et al. A fatal case of COVID-19 pneumonia occurring in a patient with severe acute ulcerative colitis. Gut. 2020;69(6):1148–1149. doi: 10.1136/gutjnl-2020-321183.
33. Ng SC, Tilg H. COVID-19 and the gastrointestinal tract: more than meets the eye. Gut. 2020;69(6):973–974. doi: 10.1136/gutjnl-2020-321195.
34. Krzysztof NJ, Christoffer LJ, Rahul K, et al. (2020). Age, inflammation and disease location are critical determinants of intestinal expression of SARS-CoV-2 receptor ACE2 and TMPRSS2 in inflammatory bowel disease. Gastroenterology. 2020 May 12;S0016-5085(20)30653-3. Online ahead of print. doi: 10.1053/j.gastro.2020.05.030.
35. Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020;104(3):246–251. doi: 10.1016/j.jhin.2020.01.022.
36. Van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARSCoV-1. N Engl J Med. 2020;82(16):1564–1567. doi: 10.1056/NEJMc2004973.
37. Nishiura H, Linton NM, Akhmetzhanov AR. Serial interval of novel coronavirus (COVID-19) infections. Int J Infect Dis. 2020;93:284–286. doi: 10.1016/j.ijid.2020.02.060.
38. Du Z, Xu X, Wu Y, et al. Serial Interval of COVID-19 among Publicly Reported Confirmed Cases. Emerg Infect Dis. 2020;26(6):1341–1343. doi: 10.3201/eid2606.200357.
39. Kam K-Q, Yung CF, Cui L, et at. A Well Infant with Coronavirus Disease 2019 (COVID-19) with High Viral Load. Clin Infect Dis. 2020 Feb 28;ciaa201. Online ahead of print. doi: 10.1093/cid/ciaa201.
40. Cai J, Xu J, Lin D, et al. A Case Series of children with 2019 novel coronavirus infection: clinical and epidemiological features. Clin Infect Dis. 2020 Feb 28;ciaa198. Online ahead of print. doi: 10.1093/cid/ciaa198.
41. Qiu H. Wu J, Hong L, et al. Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study. Lancet Infect Dis. 2020;20(6):689–696. doi: 10.1016/S1473-3099(20)30198-5.
42. Xu Y, Li X, Zhu B, et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat Med. 2020;26(4):502–505. doi: 10.1038/s41591-020-0817-4.
43. Young BE, Ong SW, Kalimuddin S, et al. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA. 2020;323(15):1488–1494. doi: 10.1001/jama.2020.3204.
44. Cao Q, Chen YC, Chen CL, Chiu CH. SARS-CoV-2 infection in children: Transmission dynamics and clinical characteristics. J Formos Med Assoc. 2020;119(3):670–673. doi: 10.1016/j.jfma.2020.02.009.
45. Su L, Ma X, Yu H, et al. The different clinical characteristics of corona virus disease cases between children and their families in China — the character of children with COVIO-19. Emerg Microbes Infect. 2020;9(1):707–713. doi: 10.1080/22221751.2020.1744483.
46. Мa Х, Su L, Zhang Y, et al. Do children need a longer time to shed SARS-CoV-2 in stool than adults? J Microbiol Immunol Infect. 2020;53(3):373–376. doi: 10.1016/j.jmii.2020.03.010.
47. Stadnytskyi V, Bax CE, Bax A, Anfinrud P. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc Natl Acad Sci U S A. 2020;117(22):11875–11877. doi: 10.1073/pnas.2006874117.
48. Zou L, Ruan F, Huang M, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020;382(12):1177–1179. doi: 10.1056/NEJMc2001737.
49. Zeng H, Хu С, Fan J, et al. Antibodies in infants born to mothers with COVID-19 pneumonia. JAMA. 2020;323(18):1848–1849. doi: 10.1001/jama.2020.4861.
50. Dong L, Tian J, He S, et al. Possible vertical transmission of SARS-CoV-2 from an infected mother to her newborn. JAMA. 2020;323(18):1846–1848. doi: 10.1001/jama.2020.4621.
51. Goldstein E, Lipsitch M. Temporal rise in the proportion of younger adults and older adolescents among coronavirus disease (COVID-19) cases following the introduction of physical distancing measures, Germany, March to April 2020. Euro Surveill. 2020;25(17):2000596. doi: 10.2807/1560-7917.ES.2020.25.17.2000596.
52. Coronavirus disease (COVID-2019) situation reports. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.
53. Тagarro A, Epalza С, Santos М, et al. Screening and severity of Coronavirus Disease 2019 (COVID-19) in children in Madrid, Spain. JAMA Pediatr. 2020 Apr 8;e201346. Online ahead of print. doi: 10.1001/jamapediatrics.2020.1346.
54. Wei M, Yuan J, Liu Y, et al. Novel Coronavirus infection in hospitalized infants under 1 year of age in China. JAMA. 2020;323(13):1313–1314. doi: 10.1001/jama.2020.2131.
55. Lu X, Zhang L, Du H, et al. SARS-CoV-2 Infection in Children. N Engl J Med. 2020;382(17):1663–1665. doi: 10.1056/NEJMc2005073.
56. Davies NG, Klepac P, Liu Y, et al. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat Med. 2020 Jun 16. doi: 10.1038/s41591-020-0962-9.
57. Feulconbridge G. Children with COVID-19 may be less contagious than adults, two UK epidemiologists say [updated May 19, 2020; cited June 29, 2020]. Available online: https://ru.reuters.com/article/healthNews/idUKKBN22V1K1.
58. Gudbjartsson DF, Helgason A, Jonsson H, et al. Spread of SARSCoV-2 in the Icelandic Population. N Engl J Med. 2020;382(24):2302–2315. doi: 10.1056/NEJMoa2006100.
59. Worcester S. COVID-19 characteristics differ in children vs adults. 2020. Available online: https://www.medscape.com/viewarticle/926805.
60. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5.
61. Zhu N, Zhang D, Wang W, et al. A novel Coronavirus from patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–733. doi: 10.1056/NEJMoa2001017.
62. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. doi: 10.1056/NEJMoa2002032.
63. Baez D. Clinical findings of 6 children with COVID-19, risks factors associated with COVID-19 death, and detection of SARSCoV-2 in different clinical specimens. Mar 13, 2020. Available online: http://www.anmco.it/uploads/u_cms/media/2020/3/b0f67d369884729177067cdc663b497c.pdf.
64. Lu X, Liqiong ZL, Du H, et al. SARS-CoV-2 Infection in Children. N Engl J Med. 2020;382(17):1663–1665. doi: 10.1056/NEJMc2005073.
65. Chan JF, Yuan S, Kok K, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395(10223):514–523. doi: 10.1016/S0140-6736(20)30154-9.
66. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi: 10.1016/S0140-6736(20)30566-3.
67. Zhang J, Dong X, Cao Y, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020;75(7):1730–1741. doi: 10.1111/all.14238.
68. Boulos MN, Geraghty EM. Geographical tracking and mapping of coronavirus disease COVID-19/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic and associated events around the world: how 21st century GIS technologies are supporting the global fight against outbreaks and epidemics. Int J Health Geogr. 2020;19(1):8. doi: 10.1186/s12942-020-00202-8.
69. Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020;323(18):1843–1844. doi: 10.1001/jama.2020.3786.
70. Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020;395(10226):809–815. doi: 10.1016/S0140-6736(20)30360-3.
71. The Daily Star. Coronavirus suspicion: 7-month-old baby sent to Dhaka from isolation ward in Kushtia. 2020. Available online: https://www.thedailystar.net/coronavirus-suspicion-in-kushtia-7-month-old-baby-isolation-ward-1886209.
72. Zeng L, Xia S, Yuan W, et al. Neonatal early-onset infection with SARS-CoV-2 in 33 neonates воrn to mothers with COVID-19 in Wuhan, China. JAMA Pediatrics. 2020;174(7):722–725. doi: 10.1001/jamapediatrics.2020.0878.
73. Xia W, Shao J, Guo Y, et al. Clinical and CT features in pediatric patients with COVID- 19 infection: Different points from adults. Pediatr Pulmonol. 2020;55(5):1169–1174. doi: 10.1002/ppul.24718.
74. Chen ZM, Fu JF, Shu Q, et al. Diagnosis and treatment recommendations for pediatric respiratory infection caused by the 2019 novel coronavirus. World J Pediatr. 2020;16(3):240–246. doi: 10.1007/s12519-020-00345-5.
75. Liu W, Zhang Q, Chen J, et al. Detection of Covid-19 in Children in Early January 2020 in Wuhan, China. N Engl J Med. 2020;382(14):1370–1371. doi: 10.1056/NEJMc2003717.
76. Zheng F, Liao C, Fan QH, et al. Clinical characteristics of children with Coronavirus Disease 2019 in Hubei, China. Curr Med Sci. 2020;40(2):275–280. doi: 10.1007/s11596-020-2172-6.
77. Marzano AV, Genovese G, Fabbrocini G, et al. Varicella-like exanthem as a specific COVID-19-associated skin manifestation: multicenter case series of 22 patients. J Am Acad Dermatol. 2020;83(1):280–285. doi: 10.1016/j.jaad.2020.04.044.
78. Genovese G, Colonna C, Marzano AV. Varicella-like exanthem associated with COVID-19 in an 8-year-old girl: a diagnostic clue? Pediatr Dermatol. 2020;37(3):435–436. doi: 10.1111/pde.14201.
79. Politi LS, Salsano E, Grimaldi M. Magnetic Resonance Imaging Alteration of the Brain in a Patient With Coronavirus Disease 2019 (COVID-19) and Anosmia. JAMA Neurol. 2020 May 29. Online ahead of print. doi: 10.1001/jamaneurol.2020.2125.
80. Benameur K, Agarwal A, Auld SC, et al. Encephalopathy and Encephalitis Associated with Cerebrospinal Fluid Cytokine Alterations and Coronavirus Disease, Atlanta, Georgia, USA, 2020. Emerg Infect Dis. 2020;26(9). Online ahead of print. doi: 10.3201/eid2609.202122.
81. Mao L, Jin H, Wang M, et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):1–9. doi: 10.1001/jamaneurol.2020.1127.
82. Zubair AS, McAlpine LS, Gardin T, et al. Neuropathogenesis and Neurologic Manifestations of the Coronaviruses in the Age of Coronavirus Disease 2019: A Review. JAMA Neurol. 2020 May 29. Online ahead of print. doi: 10.1001/jamaneurol.2020.2065.
83. Gao Y, Li T, Han M, et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol. 2020;92(7):791–796. doi: 10.1002/jmv.25770.
84. Cummings MJ, Baldwin MR, Abrams D, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020;395(10239):1763–1770. doi: 10.1016/S0140-6736(20)31189-2.
85. Li W, Cui H, Li K, et al. Chest computed tomography in children with COVID-19 respiratory infection. Pediatr Radiol. 2020;50(6):796–799. doi: 10.1007/s00247-020-04656-7.
86. Henry BM, Lippi G, Plebani M. Laboratory abnormalities in children with novel coronavirus disease 2019. Clin Chem Lab Med. 2020;58(7):1135–1138. doi: 10.1515/cclm-2020-0272.
87. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–513. doi: 10.1016/S0140-6736(20)30211-7.
88. Guo L, Ren L, Yang S, et at. Profiting early humorat response to diagnose novel Coronavirus Disease (COVID-19). Clin Infect Dis. 2020 Mar 21;ciaa310. doi: 10.1093/cid/ciaa310.
89. Kucirka LM, Lauer SA, Laeyendecker O, et al. Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction-Based SARS-CoV-2 Tests by Time Since Exposure. Ann Intern Med. 2020 May 13;M20-1495. Online ahead of print. doi: 10.7326/M20-1495.
90. Cui Y, Tian M, Huang D, et al. A 55-Day-Old Female Infant infected with COVID 19: presenting with pneumonia, liver injury, and heart damage. J Infect Dis. 2020;221(11):1775–1781. doi: 10.1093/infdis/jiaa113.
91. Turner D, Huang Y, Martin-de-Carpi J, et al. COVID-19 and paediatric inflammatory bowel diseases: global experience and provisional guidance (March 2020) from the Paediatric IBD Porto group of ESPGHAN. J Pediatr Gastroenterol Nutr. 2020;70(6):721–723. doi: 10.1097/MPG.0000000000002729.
92. Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395(10223):514–523. doi: 10.1016/S0140-6736(20)30154-9.
93. DeBiasi RL, Song X, Delaney M, et al. Severe COVID-19 in Children and Young Adults in the Washington, DC Metropolitan Region. J Pediatr. 2020;223:199–203.e1. doi: 10.1016/j.jpeds.2020.05.007.
94. Намазова-Баранова Л.С., Баранов А.А. Коронавирусная инфекция у детей (состояние на февраль 2020) // Педиатрическая фармакология. — 2020. — Т.17. — № 1. — С. 7–11. doi: 10.15690/pf.v17i1.2076.
95. D’Antiga L. Coronavimses and immunosuppressed patients. The facts during the third epidemic. Liver Transpl. 2020;26(6):832–834. doi: 10.1002/lt.25756.
96. Jackson DJ, Busse WW, Bacharier LB, et al. Association of respiratory allergy, asthma, and expression of the SARS-CoV-2 receptor ACE2. J Allergy Clin Immunol. 2020;146(1):203–206.e3. doi: 10.1016/j.jaci.2020.04.009.
97. Jancin B. TNF Inhibitors May Dampen COVID-19 Severity. May 21, 2020. Available online: https://www.medscape.com/viewarticle/930913.
98. Louapre C, Collongues N, Stankoff B, et al. Clinical Characteristics and Outcomes in Patients With Coronavirus Disease 2019 and Multiple Sclerosis. JAMA Neurol. 2020 June 26;e202581. Online ahead of print. doi: 10.1001/jamaneurol.2020.2581.
99. Rasmussen SA, Smulian JC, Lednicky JA, et al. Coronavirus Disease 2019 (COVID-19) and Pregnancy: What obstetricians need to know. Am J Obstet Gynecol. 2020;222(5):415–426. doi: 10.1016/j.ajog.2020.02.017.
100. Li Y, Zhao R, Zheng S, et al. Lack of Vertical Transmission of Severe Acute Respiratory Syndrome Coronavirus 2, China. Emerg Infect Dis. 2020;26(6):1335–1336. doi: 10.3201/eid2606.200287.
101. Lu Q, Shi Y. Coronavirus disease (COVID-19) and neonate: What neonatologist need to know. J Med Virol. 2020;92(6):564–567. doi: 10.1002/jmv.25740.
102. Zhu H, Wang L, Fang C, et al. Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia. Transl Pediatr. 2020;9(1):51–60. doi: 10.21037/tp.2020.02.06.
103. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines [updated June, 2020; cited June 29, 2020]. Available online: https://www.covid19treatmentguidelines.nih.gov.
104. Boulware DR, Pullen MF, Bangdiwala AS, et al. A Randomized Trial of Hydroxychloroquine as Postexposure Prophylaxis for Covid-19 [published online ahead of print, 2020 Jun 3]. N Engl J Med. 2020;NEJMoa2016638. doi:10.1056/NEJMoa2016638
105. FitzGerald GA. Misguided drug advice for COVID-19. Science. 2020;367(6485):1434. doi: 10.1126/science.abb8034.
106. Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020;11(1):222. doi: 10.1038/s41467-019-13940-6.
107. Martinez MA. Compounds with therapeutic potential against novel respiratory 2019 coronavirus. Antimicrob Agents Chemother. 2020;64(5):e00399-20. doi: 10.1128/AAC.00399-20.
108. Yao X, Ye F, Zhang M, et al. In Vitro Antiviral activity and projection of optimized dosing design of Hydroxychloroquine for the treatment of severe acute respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020 Mar 9;ciaa237. doi: 10.1093/cid/ciaa237.
109. Grein J, Ohmagari N, Shin D, et al. Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med. 2020;382(24):2327–2336. doi: 10.1056/NEJMoa2007016.
110. Сaо В, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020;382(19):1787–1799. doi: 10.1056/NEJMoa2001282.
111. Gautret P, Lagier J, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an openlabel non-randomized clinical trial. Int J Antimicrob Agents. 2020 Mar 20;105949. Online ahead of print. doi: 10.1016/j.ijantimicag.2020.105949.
112. Chang R, Sun W. Repositioning chloroquine as ideal antiviral prophylactic against COVID-19 — time is now. 2020;2020030279. doi: 10.20944/preprints202003.0279.v1.
113. Advisory on the use of hydroxy-chloroquine as prophylaxis for SARS-CoV-2 infection. Recommendation. 2020. Available online: https://www.mohfw.gov.in/pdf/AdvisoryontheuseofHydroxychloroquinasprophylaxisforSARSCoV-2infection.pdf.
114. Velthuis AJ, van den Worm SH, Sims AC, et al. Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 2010;6(11):e1001176. doi: 10.1371/journal.ppat.1001176.
115. Santoli JM, Lindley MC, DeSilva MB, et al. Effects of the COVID-19 Pandemic on Routine Pediatric Vaccine Ordering and Administration — United States, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(19):591–593. doi: 10.15585/mmwr.mm6919e2.
116. Cash, R., & Patel, V. (2020). Has COVID-19 subverted global health? Lancet. 2020;395(10238):1687–1688. doi: .org/10.1016/S0140-6736(20)31089-8.
117. Santoli JM, Lindley MC, DeSilva MB, et al. Effects of the COVID-19 Pandemic on Routine Pediatric Vaccine Ordering and Administration — United States, 2020. MMWR Morb Mortal Wkly Rep 2020;69:591–593. doi: http://dx.doi.org/10.15585/mmwr.mm6919e2
118. Hoffmann M, Kleine-Weber H. Schroeder S, et al. SARS-CoV-2dCell entry depens on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280.e8. doi: 10.1016/j.cell.2020.02.052.
119. Yamamoto M, Matsuyama S, Li X, et al. Identification of nafamostat as a potent inhibitor of middle east respiratory syndrome Coronavirus S Protein-Mediated membrane fusion using the splitprotein-based cell-cell fusion assay. Antimicrob Agents Chemother. 2016;60(11):6532–6539. doi: 10.1128/AAC.01.
120. Bousquet J, Anto JM, Iaccarino G, et al. Is diet partly responsible for differences in COVID-19 death rates between and within countries? Clin Transl Allergy. 2020;10:16. doi: 10.1186/s13601.
121. Parikh PA, Shah BV, Phatak AG, et al. COVID-19 Pandemic: Knowledge and Perceptions of the Public and Healthcare Professionals. Cureus. 2020;12(5):e8144. doi: 10.7759/cureus.8144.
Адрес: 115114, Москва, ул. Летниковская, д. 4, стр.5, офис 2.4
тел.\факс: +7(499)754-99-94, доб. 502
e-mail: covid19@neicon.ru
Проект реализуется с использованием гранта Президента Российской Федерации на развитие гражданского общества, предоставленного Фондом президентских грантов.
Содержимое сайта, если не указано иное, опубликовано в соответствии с лицензией Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная (CC BY 4.0). Права на материалы, переданные партнерами проекта, принадлежат их правообладателям.
© 2025 NEICON