1. Баранов А. А., Багненко С. Ф., Намазова-Баранова Л. Р. и др. Клинические рекомендации по оказанию скорой медицинской помощи при отравлениях у детей // Педиатрическая фармакология. ‒ 2015. ‒ Т. 12, № 6. ‒ С. 657–667.
2. Маянский А. Н., Маянский Д. Н. Очерки о нейтрофиле и макрофаге. Новосибирск: Наука, 1989. – 324 с.
3. Орлов Ю. П. Патогенетическая значимость нарушенного обмена железа при критических состояниях: Дис. … д-ра мед. наук. ‒ Омск, 2009.
4. Орлов Ю. П., Долгих В. Т. Метаболизм железа в биологических системах (биохимические, патофизиологические и клинические аспекты) // Биомедицинская химия. – 2007. – Т.53, № 1. – С. 25–38.
5. Орлов Ю. П., Долгих В. Т., Глущенко А. В и др. Роль сывороточного железа в активации процессов липопероксидации при критических состояниях // Общая реаниматология. – 2006. – Т. 2, № 3. – С. 18–22.
6. Орлов Ю. П., Долгих В. Т., Лукач В. Н. и др. Роль нарушенного обмена железа в манифестации органных расстройств и сепсиса при остром панкреатите // Общая реаниматология. – 2010. – Т. VI, № 5. – С. 62–68.
7. Орлов Ю. П., Орлова Н. В., Михеев Е. Ю. Отравления уксусной кислотой. Новый взгляд на старую проблему «русской болезни»: Методическое пособие для врачей. ‒ Санкт-Петербург: Тактик-Студио, 2015.
8. Baig A. M., Khaleeq А., Ali U. et al. Evidence of the COVID-19 virus targeting the cns: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms // ACS Chem. Neurosci. ‒ 2020. ‒ doi:10.1021/acschemneuro.0c00122. URL: https://Users/Anesteziologiya/Downloads/1.pdf.
9. Bartolomei G., Cevik R. E., Marcello A. Modulation of hepatitis C virus replication by iron and hepcidin in Huh7 hepatocytes // J. Gen. Virol. – 2011. – Vol. 92. – P. 2072–2081.
10. Bassetti M. The novel chinese coronavirus (2019-nCoV) infections: challenges for fighting the storm https://doi.org/10.1111/eci.13209 URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/eci.13209.
11. Behzadi M. A., Leyva-Grado V. H. Overview of current therapeutics and novel candidates against influenza, respiratory syncytial virus, and middle east respiratory syndrome coronavirus infections // Front. Microbiol. – 2019. ‒ № 10. ‒ P. 1327.
12. Brueckl C., Kaestle S., Kerem A. et al. Hyperoxia-induced reactive oxygen species formation in pulmonary capillary endothelial cells in situ // Am. J. Respir. Cell. Mol. Biol. – 2006. – Vol. 34, № 4. – P. 453‒463.
13. Chen N., Zhou M., Dong X. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study // Lancet. ‒ 2020. ‒ doi: 10.1016/S0140-6736(20)30211-7.
14. Colafrancesco S., Alessandri C., Conti F. et al. COVID-19 gone bad: A new character in the spectrum of the hyperferritinemic syndrome? // Autoimmun. Rev. – 2020. – Vol. 5. – P. 102573. doi: 10.1016/j.autrev.2020.102573.
15. Corna G., Campana L., Pignatti E. et al. Polarization Dictates Iron Handling by Inflammatory and Alternatively Activated Macrophages // Haematologica. – 2010. – Vol. 95, № 11. – P. 1814‒1822. doi: 10.3324/haematol.2010.023879.
16. COVID-19 as part of hyperferritinemic syndromes: implications for treatment. (NCT04333550) https://clinicaltrials.gov/ct2/show/NCT04333550.
17. Davies L., Jenkins S., Allen J. et al. Tissue-resident Macrophages // Nat. Immunol. – 2013. – Vol. 14, № 10. – P. 986‒995.
18. Drakesmith H., Prentice A. Viral infection and iron metabolism // Nat. Rev. Microbiol. – 2008. – Vol. 6, № 7. – P. 541–552.
19. Dufrusine B., Di Francesco A., Oddi S. et al. Iron-dependent trafficking of 5-lipoxygenase and impact on human macrophage activation // Front. Immunol. – 2019. – Vol. 28, № 10. – P. 1347. doi: 10.3389/fimmu.2019.01347.
20. Galli A., Svegliati-Baroni G., Ceni E. et al. Oxidative stress stimulates proliferation and invasiveness of hepatic stellate cells via a MMP2-mediated mechanism // Hepatology. ‒ 2005. ‒ Vol. 41, № 5. ‒ P. 1074–1084.
21. Ghio A. J., Pritchard R. J., Dittrich K. L. et al. Non-heme (Fe3+) in the lung increases with age in both humans and rats // J. Lab. Clin. Med. ‒ 1997. ‒ Vol. 129, № 1. ‒ P. 53‒61.
22. Ghio A. J., Stoneheurner J. G., Richards J. H. et al. Iron homeostasis and oxidative stress in idiopathic pulmonaryalveolar proteinosis // Respir. Res. ‒ 2008. ‒ Vol. 9. ‒ P. 10.
23. Haider B. A., Spiegelman D., Hertzmark E. et al. Anemia, iron deficiency, and Iron supplementation in relation to mortality among HIV-infected patients receiving highly active antiretroviral therapy in Tanzania // Am. J. Trop. Med. Hyg. ‒ 2019. ‒ Vol. 100, № 6. ‒ P. 1512–1520.
24. Hentze M., Muckenthaler M., Galy B. et al. Two to tango: regulation of mammalian iron metabolism // Cell. ‒ 2010. ‒ Vol. 142. ‒ P. 24–38.
25. Hofer T., Marzetti E., Xu J. et al. Increased iron content and RNA oxidative damage in skeletal muscle with aging and disuse atrophy // Exp. Gerontol. ‒ 2008. ‒ Vol. 43, № 6. ‒ P. 563‒570.
26. Humayun F., Domingo-Fernández D., Paul G. A. et al. A computational approach for mapping heme biology in the context of hemolytic disorders // Front. Bioeng. Biotechnol. ‒ 2020. ‒ Vol. 8. ‒ P. 74.
27. Janka G. E. Familial and acquired hemophagocytic lymphohistiocytosis // Eur. J. Pediatr. ‒ 2007. ‒ Vol. 166. ‒ P. 95–109.
28. Lian F., Wang Y., Yang X. et al. Clinical features and hyperferritinemia diagnostic cutoff points for AOSD based on ROC curve: a Chinese experience // Rheumatol. Int. ‒ 2012. ‒ Vol. 32. ‒ P. 189–192.
29. Liu W., Zhang S., Nekhai S. et al. Depriving iron supply to the virus represents a promising adjuvant therapeutic against viral survival // Curr. Clin. Microbiol. Rep. ‒ 2020. ‒ Vol. 20. ‒ P. 1. doi: 10.1007/s40588-020-00140-w.
30. López-Prieto J., González-Reimers E., Alemán-Valls M. R. et al. Iron and proinflammatory cytokines in chronic hepatitis C virus infection // Biol. Trace Elem. Res. ‒ 2013. ‒ Vol. 155, № 1. ‒ P. 5‒10.
31. Madotto F., Rezoagli E., Pham T. et al. Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome: insights from the LUNG SAFE study // Crit. Care. ‒ 2020. ‒ Vol. 24, № 1. ‒ P. 125.
32. Nishina S., Hino K., Korenaga M. et al. Hepatitis C virus-induced reactive oxygen species raise hepatic iron level in mice by reducing hepcidin transcription // Gastroenterology. ‒ 2008. ‒ Vol. 134. ‒ P. 226–238.
33. Rosario C., Zandman-Goddard G., Meyron-Holtz E. G. et al. The Hyperferritinemic syndrome: macrophage activation syndrome, Still’s disease, septic shock and catastrophic antiphospholipid syndrome // BMC Med. ‒ 2013. ‒ Vol. 11. ‒ P. 185–196.
34. Seo A.Y., Xu J., Servais S. et al. Mitochondial iron accumulation with age and functional consequences // Aging. Cell. ‒ 2008. ‒ Vol. 7. ‒ P. 706–716.
35. Shoenfeld Y. Corona (COVID-19) time musings: Our involvement in COVID-19 pathogenesis, diagnosis, treatment and vaccine planning // Autoimmun. Rev. ‒ 2020. ‒ Vol. 5. ‒ P. 102538.
36. Tacke F., Nuraldeen R., Koch A. et al. Iron parameters determine the prognosis of critically Ill patients // Crit. Care Med. ‒ 2016. ‒ Vol. 44, № 6. ‒ P. 1049–1058.
37. Thursz M. Iron, haemochromatosis and thalassaemia as risk factors for fibrosis in hepatitis C virus infection // Gut. ‒ 2007. ‒ Vol. 56, № 5. ‒ P. 613–614.
38. Wang X. H., Cheng P. P., Jiang F. et al. The effect of hepatitis B virus infection on hepcidin expression in hepatitis B patients // Ann Clin Lab Sci. ‒ 2013. ‒ Vol. 43. ‒ P. 126–134.
39. Weinberg E. D. Iron toxicity: new conditions continue to emerge // Oxid. Med. Cell. Longev. ‒ 2009. ‒ Vol. 2, № 2. ‒ P. 107‒109.
40. Yang J., Zhang G., Dong D. et al. Effects of iron overload and oxidative damage on the musculoskeletal system in the space environment: data from spaceflights and ground-based simulation models // Intern. J. Molec. Sci. ‒ 2018. ‒ Vol. 3, № 19. ‒ P. 2608.
41. Yonal O., Akyuz F., Demir K. et al. Decreased prohepcidin levels in patients with HBV-related liver disease: relation with ferritin levels // Dig. Dis. Sci. ‒ 2010. ‒ Vol. 55. ‒ P. 3548–3551.
42. Zhong H., Yazdanbakhsh K. Hemolysis and Immune Regulation // Curr. Opin. Hematol. ‒ 2018. ‒ Vol. 25, № 3. ‒ P. 177‒182. doi: 10.1097/MOH.000000000423.
43. Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult in patients with COVID-19 in Wuhan, China: a retrospective cohort study // Lancet. ‒ 2020. ‒ Vol. 395 (10229). ‒ P. 1054–1062.
44. Zhou Y., Que K., Zhang Z., et al. Iron overloaded polarizes macrophage to proinflammation phenotype through ROS/acetyl-p53 // Pathway Cancer Med. ‒ 2018. ‒ Vol. 7, № 8. ‒ P. 4012‒4022. doi: 10.1002/cam4.1670.
45. Zhu L., Zhao Q., Yang T. et al. Cellular metabolism and macrophage functional polarization // Int. Rev. Immunol. ‒ 2015. ‒ Vol. 34, № 1. ‒ P. 82‒100. doi: 10.3109/08830185.2014.969421.