Статья

Cross-Validation Comparison of COVID-19 Forecast Models.

M. Atchadé, Y. Sokadjo, A. Moussa, S. Kurisheva, M. Bochenina,
2021

Many papers have proposed forecasting models and some are accurate and others are not. Due to the debatable quality of collected data about COVID-19, this study aims to compare univariate time series models with cross-validation and different forecast periods to propose the best one. We used the data titled "Coronavirus Pandemic (COVID-19)" from "'Our World in Data" about cases for the period of 31 December 2019 to 21 November 2020. The Mean Absolute Percentage Error (MAPE) is computed per model to make the choice of the best fit. Among the univariate models, Error Trend Season (ETS), Exponential smoothing with multiplicative error-trend, and ARIMA; we got that the best one is ETS with additive error-trend and no season. The findings revealed that with the ETS model, we need at least 100 days to have good forecasts with a MAPE threshold of 5%.

Цитирование

Похожие публикации

Документы

Источник

Версии

  • 1. Version of Record от 2021-05-26

Метаданные

Об авторах
  • M. Atchadé
    University of the Sciences
  • Y. Sokadjo
    National University of Benin
  • A. Moussa
    University of the Sciences
  • S. Kurisheva
    Saint Petersburg State University of Economics
  • M. Bochenina
    Saint Petersburg State University of Economics
Предметная рубрика
  • COVID-19
Название журнала
  • SN computer science
Том
  • 2
Выпуск
  • 4
Страницы
  • 296
Ключевые слова
  • COVID-19;Cross-validation;Forecast;Statistical modeling;Time series;
Тип документа
  • journal article
Источник
  • lens