Статья

A spatial autocorrelation for modelling the spread of coronavirus infections

I. Naumov, S. Krasnykh, Y. Otmakhova,
2021

Spatial autocorrelation methods are used to study spatial disproportions in the socio-economic development of territories. The most common research methods are the analysis of Moran local indices, Moran global index, Getis-Ord hot spots. In this study, we used spatial autocorrelation methods to estimate COVID-19 distribution patterns. As a result of the study, we identified the formed growth poles, the epicenters of the spread of infection (St. Petersburg, Sverdlovsk and Nizhny Novgorod regions) and only emerging ones. The practical application of this methodological approach allowed us to predict further spatial directions of the spread of coronavirus infection (Vladimir, Kaluga, Smolensk, Tula, Tver, Yaroslavl, Ryazan and Leningrad regions).

Цитирование

Похожие публикации

Версии

  • 1. Version of Record от 2021-05-18

Метаданные

Об авторах
  • I. Naumov
    Institute of Economics of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
  • S. Krasnykh
    Institute of Economics of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
  • Y. Otmakhova
    Central Economics and Mathematics Institute of the Russian Academy of Sciences, Moscow, Russia
Название журнала
  • SHS Web of Conferences
Том
  • 106
Страницы
  • 01001
Издатель
  • EDP Sciences
Тип документа
  • journal article
Тип лицензии Creative Commons
  • CC BY
Правовой статус документа
  • Свободная лицензия
Источник
  • dimensions