1. Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q. Prevalence of comorbidities and its effects in patients infected with SARSCoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91–95. doi:10.1016/j.ijid.2020.03
2. Yang L, Chan KP, Lee RS, Chan WM, Lai HK, Thach TQ et al. Obesity and influenza associated mortality: evidence from an elderly cohort in Hong Kong. Prev Med. 2013;56(2):118–123.
3. Morgan OW, Bramley A, Fowlkes A, Freedman DS, Taylor TH, Gargiullo P et al. Morbid obesity as a risk factor for hospitalization and death due to 2009 pandemic influenza A (N 1) disease. PLoS One. 2010;15;5(3):e9694. doi:10.1371/journal.pone.0009694
4. Petrilli CM, Jones SA, Yang J, Rajagopalan H, O’Donnell LF, Chernyak Y et al. Factors associated with hospitalization and critical illness among 4,103 patients with COVID-19 disease in New York City. Br Med J. 2020;369: m1966. doi.org/10.1136/bmj.m1966
5. Simonnet A, Chetboun M, Poissy J, Raverdy V, Noulette J, Duhamel A et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity (Silver Spring). 2020. [Ahead of print, published online 9 April 2020]. doi:10.1002/oby.22831
6. Lighter J, Phillips M, Hochman S, Sterling S, Johnson D, Francois F et al. Obesity in patients younger than 60 years is a risk factor for Covid-19 hospital admission. Clin Infect Dis. 2020. [Ahead of print, published online 9 April 2020]. doi:10.1093/cid/ciaa415
7. Xue T, Li Q, Zhang Q, Lin W, Wen J, Li L et al. Blood glucose levels in elderly subjects with type 2 diabetes during COVID-19 outbreak: a retrospective study in a single center. medRxiv. 2020. [Рublished online 2 April 2020]. doi:10.1101/2020.03.31.20048579
8. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE 2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586–590. doi:10.1007/s00134020-05985-9
9. Turner AJ, Hooper NM. The angiotensin-converting enzyme gene family: genomics and pharmacology. Trends Pharmacol Sci. 2002;23(4):177–183.
10. Batlle D, Soler MJ, And Ye M. ACE 2 and Diabetes: ACE of ACEs? Diabetes. 2010;59(12):2994–2996. doi:10.2337/db10-1205
11. Tikellis C, Wookey PJ, Candido R, Andrikopoulos S, Thomas MC, Cooper ME. Improved islet morphology after blockade of the renin-angiotensin system in the ZDF rat. Diabetes. 2004;53(4):989–997.
12. Ye M, Wysocki J, William J, Soler MJ, Cokic I, Batlle D. Glomerular localization and expression of angiotensin-converting enzyme 2 and angiotensin-converting enzyme: implications for albuminuria in diabetes. J Am Soc Nephrol. 2006;17(11):30673075.
13. Reich HN, Oudit GY, Penninger JM, Scholey JW, Herzenberg AM. Decreased glomerular and tubular expression of ACE 2 in patients with type 2 diabetes and kidney disease. Kidney Int. 2008;74(12):1610–1616.
14. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S et al. SARS-CoV-2 cell entry depends on ACE 2 and TMPRSS 2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280. doi:10.1016/j.cell.2020.02.052
15. Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Singlecell RNA expression profiling of ACE 2, the putative receptor of Wuhan COVID-19. 2020. [Ahead of print, published online 9 April 2020]. doi.org/10.1101/2020.01.26.919985
16. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS. J Virology. 2020;94(7):127–120. doi:10.1128/JVI.00127-20
17. Bornstein SR, Dalan R, Hopkins D, Mingrone G, Boehm BO. Endocrine and metabolic link to coronavirus infection. Nat Rev Endocrinol. 2020;16(6):297–298. doi.org/10.1038/s41574-0200353-9
18. Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. N Engl J Med. 2020;382(17):1653–1659. doi.org/10.1056/NEJMsr2005760
19. Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010;47(3):193–199. doi.org/10.1007/s00592-0090109-4
20. Carlsson PO, Berne C, Jansson L. Angiotensin II and the endocrine pancreas: effects on islet blood flow and insulin secretion in rats. Diabetologia. 1998;41(2):127–133.
21. Roca-Ho H, Riera M, Palau V, Pascual J, Soler MJ. Characterization of ACE and ACE 2 expression within different organs of the NOD mouse. Int J Mol Sci. 2017;18(3):563. doi:10.3390/ijms18030563
22. Richard C, Wadowski M, Goruk S, Cameron L, Sharma AM, Field CJ. Individuals with obesity and type 2 diabetes have additional immune dysfunction compared with obese individuals who are metabolically healthy. BMJ Open Diabetes Res Care. 2017;5(1): e000379. doi:10.1136/bmjdrc-2016-000379
23. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85–97.
24. Green WD, Beck MA. Obesity impairs the adaptive immune response to influenza virus. Ann Am Thorac Soc. 2017;14(Suppl. 5):S 406–S 409.
25. Ussher JR, Drucker DJ. Endocrine Reviews. 2012; 33(2):187–215. doi:10.1210/er.2011-1052
26. Sell H, Blüher M, Klöting N, Schlich R, Willems M, Ruppe F et al. Adipose dipeptidyl peptidase-4 and obesity: correlation with insulin resistance and depot-specific release from adipose tissue in vivo and in vitro. Diabetes Care. 2013;36(12):4083–4090. doi:10.2337/dc13-0496
27. Iacobellis G. COVID-19 and diabetes: Can DPP4 inhibition play a role? Diabetes Res Clin Pract. 2020;26(162):108–125. doi:10.1016/j.diabres.2020.108125
28. Raj VS, Mou H, Smits SL, Dekkers DH, Müller MA, Dijkman R et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013;495(7440):251–254. doi:10.1038/nature12005
29. Canton J, Fehr АR, Fernandez-Delgado R, GutierrezAlvarez FJ, Sanchez-Aparicio MT, García-Sastre A et al. MERSCoV 4b protein interferes with the NF-κB-dependent innate immune response during infection. PLoS Pathog. 2018;14(1):e1006838. doi:10.1371/journal.ppat.1006838
30. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5(4):562–569. doi:10.1038/s41564-020-0688-y
31. [Electronic resource]. URL: https://www.clinicaltrials.gov/ct2/show/NCT04341935
32. Guo W, Li M, Dong Y, Zhou H, Zhang Z, Tian C at al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. 2020: e3319. doi:10.1002/dmrr.3319
33. Guo J, Hang Z, Lin L, Lv J. Coronavirus disease 2019 (COVID-19) and cardiovascular disease: a viewpoint on the potential influence of angiotensin-converting enzyme inhibitors/ angiotensin receptor blockers on onset and severity of severe acute respiratory syndrome Coronavirus 2 infection. J Am Heart Assoc. 2020;9(7):e016219. doi:10.1161/JAHA.120.016219
34. Ma W-X, Ran X-W. The management of blood glucose should be emphasized in the treatment of COVID-19. Sichuan Da Xue Xue Bao Yi Xue Ban. 2020;51(2):146–150. doi:10.12182/20200360606
35. Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL at al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients. 2020;12(4):988. doi:10.3390/nu12040988
36. Barnett JB, Hamer DH, Meydani SN. Low zinc status: a new risk factor for pneumonia in the elderly? Nutr Rev. 2010;68(1):30–37. doi.org/10.1111/j.1753-4887.2009.00253
37. Gupta R, Ghosh A, Singh AK, Misra A. Clinical considerations for patients with diabetes in times of COVID-19 epidemic. Diabetes Metab Syndr. 2020;14(3):211–212. doi:10.1016/j.dsx.2020.03.002
38. Ma WX, Ran XW. The Management of Blood Glucose Should be Emphasized in the Treatment of COVID - 19. Sichuan Da Xue Xue Bao Yi Xue Ban. 2020;51(2):146–150. doi:10.12182/20200360606
39. Amott C, Li Q, Kang A, Neuen BL, Bompoint S, Lam CSP et al. SGLT2i for the prevention of cardiovascular events in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. J Am Heart Assoc. 2020;9(3): e014198.
40. Strugaru AM, Botnariu G, Agoroaei L, Grigoriu IC, Butnaru E. Metformin induced lactic acidosis-particularities and course. Rev Med Chir Soc Med Nat Iasi. 2013;117(4):1035–1042.
41. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020;8(4): e21. doi:10.1016/S22132600(20)30116-8
42. de Simone G. Position statement of the ESC Council on hypertension on ACE-inhibitors and angiotensin receptor blockers. [Electronic resource]. URL: https://www.escardio.org/Councils/Council-on-Hypertension-(CHT)/News/position-statement-of-theesc-council-on-hypertension-on-ace-inhibitors-and-angDate: 2020 Date accessed: April 15, 2020.
43. Yang W, Cai X, Han X, Ji L. DPP-4 inhibitors and risk of infections: a meta-analysis of randomized controlled trials. Diabetes Metab Res Rev. 2016;32(4):391–404. doi:10.1002/dmrr.2723
44. Pasquel FJ, Fayfman M, Umpierrez GE. Debate on insulin vs non-insulin use in the hospital setting-is it time to revise the guidelines for the management of inpatient diabetes? Curr Diab Rep. 2019;19(9):65. doi:10.1007/s11892-019-1184-8
45. Botta L, Rivara M, Zuliani V, Radi M. Drug repurposing approaches to fight Dengue virus infection and related diseases. Front Biosci (Landmark Ed). 2018;23:997–1019.
46. Гринева Е. Н., Халимов Ю. Ш., Бабенко А. Ю., Каронова Т. Л., Цой У. А., Попова П. В. и др. Рекомендации по ведению больных COVID-19 и эндокринными заболеваниями в период пандемии. [Электронный ресурс]. URL: http://www.almazovcentre.ru/?p=62944
47. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Под редакцией И. И. Дедова, М. В. Шестаковой, А. Ю. Майорова. 9-й выпуск (дополненный). Сахарный диабет. 2019;22(S 1). doi:10.14341/DM221S1