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Abstract 

A model of the spread of viruses in a network of cities is considered, taking into account a 
delay caused by the long incubation period of the viruses. The usual infection spread and 
dynamics with a delay are compared. A temporary asymmetry of the infection spread has 
been identified, when the time of the pandemic developing significantly exceeds the time for 
its completion. Numerical simulations of the spread of viruses in a network of interconnected 
large and small cities were carried out, and pandemic features in a small world were revealed, 
including the possibility of re-infection of the megalopolises. 
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1. Introduction 

The spread of viruses (SV) in systems with a network 
structure and the emergence of pandemics have fundamental 
scientific interest and are the vital problems for natural 
biological populations, the human community, as well as for 
artificial computer systems. The danger of global pandemics 
gives particular urgency to these problems, and the COVID-
19 pandemic made their importance even more clear.  

The direct experiment in such complex systems is 
practically impossible, therefore, in addition to studying and 
analyzing specific cases, there remains the way of a rather 
limited laboratory and alternative mathematical modeling of 
pandemics. Due to the safety and speed of assessing the 
development of situations, one of the most power tools for 
studying the emergence, growth, spread and extinction of 
pandemics is their mathematical modeling and computer 
simulation.  

The simplest model of SV refers to a homogeneous 
system in which the spread rate depends on the number of 
infected carriers and the number of individuals not yet 
infected. SV in such a system is wave-like and is described 
by the Fisher-Kolmogorov-Petrovsky-Piskunov equation [1, 
2]. However, many natural, socio-economic and artificial 

technical systems are highly spatially heterogeneous, which 
greatly complicates the analysis and understanding the 
processes of SV in them [3, 4].  

One of the most important factors influencing the 
understanding and control of pandemics is some time delay 
of the process, when a certain time elapses from the moment 
of infection to the moment of active manifestation of the 
virus, after which the individual becomes a source of 
infection [5, 6]. The effects of delay mask the causal 
relationships in the dynamics of SV, and make wrong any 
linear prediction, even in the short term.  

The outbreak of the global pandemic of the COVID-19, 
which is a global medical, political, organizational, moral, 
economic and intellectual challenge to humanity, has 
stimulated not only an intensified search for drugs, but also a 
simulation of the mechanisms of SV in the human population 
[7-10], as a better understanding mechanisms for the 
evolution of pandemics allows us to make optimal decisions 
when dealing with them. The simplest step-by-step model of 
the propagation of the network lesions, based on 
representation of a network as a graph, shows the critical 
dependence of the network resistance to the spread of viral-
type lesions on the degree of its connectivity. The graph-
based theory matrix analysis reveals the extreme 
vulnerability of the global networks.  
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The key goal of our efforts is to obtain a decision-making 
tool based on the choice of the best option, within the 
framework of the system analysis paradigm, when to find 
exact solution of the problem is impossible, but a number of 
characteristic scenarios can be distinguished. In this paper, 
we propose dynamic network mathematical model, as a 
generalization of available models and approaches, and 
present the results of the study of few artificially constructed 
examples that demonstrate possible scenarios for the 
evolution of a pandemic. 

2. The mathematical model of the spread of viruses 

The simplest SIR (susceptible, infection, recovered)   
model of the spread of viral infection in the population is 
described by a system of three differential equations [11]. 
We apply this model to a set of interconnected cities between 
which a certain proportion of infected individuals are 
exchanged [12] with conservation the general balance of the 
subpopulations.  

We denote the number of uninfected individuals in a given 
city kS , the number of infected kI , and the number of those 

who left the process as a result of a cure with stable 
immunity or who died kR . The system of balance equations 

describing this process has the form 
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In this system of equations, the term )(  tIg kk  in the 

right-hand side of the second equation takes into account the 
elimination of infected virulent individuals from SV due to 
isolation effect. The last term in the right-hand side of the 
second equation is responsible for the transport of viruses by 
traffic flows. In this way, our model is distinguished from 
previous models by the explicit consideration of delays. In 
these equations the total number of individuals of all types in 
the k-th subpopulation kkkk RISN   is conserved;    is 

the incubation period of the virus, causing a delay in the 
reproduction of the virus counting from the time of infection; 

kj  is a delay time due to the transport of infected between 

cities;  T   is the average delay time from infection to 
isolation; )(tk   is the infection rate; )(tg k   is the 

coefficient of isolation of existing patients; )(tkj  is the 

coefficient characterizing the rate of transfer of infected from 
the j - th city to the city with number k.  

Coefficients )(tk  can be determined by knowing the 

number of infected individuals per one day. In the same way, 
it is possible to determine coefficients )(tg k  through the 

number of people who were isolated from the number of 
those who became infected in a unit time interval, taking into 
account the additional shift due to the time of the disease 
detection. Coefficients )(tkj  can be extracted from the 

traffic statistics. All the coefficients are individual for each 
node (city) and, in general case, may depend on time.  

We suppose that the number of infected individuals 
arriving from another city is proportional to the number of 
infected individuals in the source. This means the absence of 
dynamics of change during transportation, i.e. short lag times 
typical for air travel. In this case, we can simply put the delay 
time equal to zero. Otherwise, when considering a vessel or a 
long-distance train as a vehicle, it is necessary to modify the 
system of equations (1), and consider more completely the 
changes with the health of passengers during a long travel 
time.  

3. Numerical examples and discussions 

The system of equations (1) has a simple structure, but it 
is nonlinear, and analytically unsolved although its numerical 
solution is quite simple. Observing the testable symptoms of 
the incidence, we do not see today picture, but situation 
several days before due to the latent period of infection. For 
further numerical simulations, we take delay constants  

5 , 8,0  Tkj  days.  

As a first step, we demonstrate the dynamics of SV in a 
particular city, described by the couple of equations 
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with initial conditions 1)0( I , NS )0( . In the absence of 

the infection transfer from other subpopulations, it is 
constructive to introduce new variables NIiNSs /,/  , 

and we get 
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with the initial conditions 1)0(,/1)0(  sNi . Thus, our 

equations demonstrate self-similarity, with the exception of 
the influence of the initial conditions. They differ from the 
standard SIR equations by taking into account two delay 
effects: the duration of the incubation period when the 
individual is infected but not yet a source of viruses, and the 
average duration from infection to isolation.  
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Figure 1 shows the result of numerical simulation of the 
solution of equations (3) for a city with population of 1 
million inhabitants, without delays (two left-shifted lower 
magnitude curves) and with delays (right curves) for various 
coefficients of infection and isolation.  
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Figure 1. The spontaneous dynamics of SV for 
3.0,4.1  g  (solid lines), and SV with restrictions   

( 9.0,1.1  g , dot lines). 

Simulation with a single individual initial infection 
demonstrates the effects of delay significantly worsen the 
picture of a pandemic. Comparison of the spontaneous 
dynamics of SV and the dynamics with the restriction on 
contacts and isolation of infected people shows the 
effectiveness of quarantine measures.  

The existing systems of cities connecting by traffic 
streams complicate the picture of SV [13]. We consider a 
couple artificially constructed examples demonstrating the 
different dynamics of SV between cities connected by traffic 
flows. As options, we look the spread of viruses in fully 
connected systems. We take two groups of cities: cities with 
a population of one million people and cities with a 
population of two hundred thousand people. This allows us 
to analyze the effect of convective transport of infection on 
the heterogeneous spread of viruses. The first two equations 
of the system (1) are solved independently of the third. Given 
the approximations made, we obtain a closed system of 
equations  
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where to further simplify the analysis, we assumed that 
gtg k )( ,  )(tk ,  )(tkj , i.e., the rate of all the 

processes are the same across the network of cities and 
independent on time. This extreme simplification will make 
it possible, by intentionally reducing the detail of the model, 
to understand the influence of factors of different origin 

outside their inevitable distribution over magnitude in the 
real systems. We take  1000/1  universal for all transport 
links between cities. The parameters taken by us are of an 
evaluative model nature and are not reliable for reproducing 
real-world situations.  

For analysis, we separately display the percentage 
dynamics of SV for groups of large and small cities. The 
results of modeling SV in a full-connected system with one 
millionth city and five small cities, having the first single 
infection in the largest of them,   are shown in figure 2 when 

4.1 , 3.0g   (higher magnitudes), and when subject to 

additional restrictions on the infection rate and isolation of 
the population ( 1.1 , 9.0g , lower magnitudes).  
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Figure 2. The dynamics of SV in a small network of 6 fully 
connected cities. 

The results of numerical simulation of SV in a fully 
connected system of five large cities and fifty small cities 
with the first single infection in a large city are shown in 
figure 3: when 4.1 , 3.0g  (higher magnitudes), and 

under conditions of restriction of the people moving and 
isolation of the infected population ( 1.1 , 9.0g , lower 

magnitudes).  
The main feature of the infection dynamics in such a small 

world is the non-uniformity of the infection growth in the 
large cities and a group of small cities. When viruses spread 
in a system of connected cities, starting from a large city, an 
additional delay effect arises due to the time spent on the 
transfer of pathogens from city to city. Another feature of the 
dynamics of a pandemic in a network with large cities 
surrounded by a number of small cities is the occurrence of a 
nonmonotonic in time growth rate of infections and even 
possible local intervals of the recession, which can be 
misleading, causing unreasonable assumptions about the near 
end of the pandemic and the premature removal of restrictive 
measures. This non-uniformity is due to the role of the 
environment as a reservoir for re-infection. The second wave 
of infection can be avoided by introducing short-term 
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restrictions on entry into large cities during the peak phase of 
infection in small cities.  
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Figure 3. The dynamics of SV in a large network of 55 
connected cities. 

The comparative dynamics in two different networks with 
one large city and a number of large cities demonstrates the 
inversion effect of the infection order for large and small 
cities for these two substantially different cases.     

4. Conclusions 

The incubation delay of several days leads to substantial 
increasing duration of a pandemic, stretching it from the 
more usual monthly period up to the 90-100 days interval in 
a separate megapolis in a network of connected cities. The 
dynamics of infection is asymmetrical with respect to the 
peak shape. For the fixed kinetic coefficients the dynamics 
simulation with time-delay effects predicts the increasing of 
infection takes longer and more smoothly, compared with the 
completion phase of the spread of infection. Reaching a 
constant growth rate of infected people indicates that the 
peak of the pandemic is approaching, but only in the absence 
of surrounding infection reservoir.  

The best scenario for combating a pandemic depends on 
the economic power of society or its willingness to endure 
restrictions and hardships, especially in large metropolitans. 
The number of lives saved and the degradation of an idle 
economy are closely related together. However, decreasing 
the rate of virus infection spread due to social isolation 
separately without strict isolation measures does not produce 
a significant inhibitory effect. 

Our modification of SIR consider the nonlocality in time 
of the processes in a simplified form using delay constants, 
while a more detailed description can be obtained with 
integral operators that take into account memory effects. The 
development of such more sophisticated model is hindered 
not only by theoretical difficulties, but also by the vagueness 
of the practical availability of determining its parameters. 

However, the general conclusion about the feasibility of 
tough measures restricting SV with a long incubation phase, 
using combined social distance and isolation of infected 
people, our model demonstrates with high visibility. We note 
that the simulation of real scenarios requires the use of 
specific data on the number of cities, transport activity, as 
well as the infection and isolation rate constants. 
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