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METHODOLOGY

Fast prototyping of a local fuzzy search 
system for decision support and retraining 
of hospital staff during pandemic
Evgeny A. Bakin1* , Oksana V. Stanevich1 , Daria M. Danilenko2 , Dmitry A. Lioznov1,2  and 
Alexander N. Kulikov1  

Abstract 

Purpose: The COVID-19 pandemic showed an urgent need for decision support systems to help doctors at a time of 
stress and uncertainty. However, significant differences in hospital conditions, as well as skepticism of doctors about 
machine learning algorithms, limit their introduction into clinical practice. Our goal was to test and apply the principle 
of ”patient-like-mine” decision support in rapidly changing conditions of a pandemic.

Methods: In the developed system we implemented a fuzzy search that allows a doctor to compare their medical 
case with similar cases recorded in their medical center since the beginning of the pandemic. Various distance metrics 
were tried for obtaining clinically relevant search results. With the use of R programming language, we designed the 
first version of the system in approximately a week. A set of features for the comparison of the cases was selected with 
the use of random forest algorithm implemented in Caret. Shiny package was chosen for the design of GUI.

Results: The deployed tool allowed doctors to quickly estimate the current conditions of their patients by means of 
studying the most similar previous cases stored in the local health information system. The extensive testing of the 
system during the first wave of COVID-19 showed that this approach helps not only to draw a conclusion about the 
optimal treatment tactics and to train medical staff in real-time but also to optimize patients’ individual testing plans.

Conclusions: This project points to the possibility of rapid prototyping and effective usage of ”patient-like-mine” 
search systems at the time of a pandemic caused by a poorly known pathogen.
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Introduction
Recent events revealed that despite considerable pro-
gress in health information systems (HIS), biostatistics, 
clinical pharmacology and evidence-based medicine 
in general, humanity still does not have sufficient tools 
to address sudden pandemic outbreaks. The spread 
of the disease caused by a new coronavirus infection 
(COVID-19) was accompanied by frequent changes in 
clinical guidelines, absence of unified standards for anti-
epidemic measures, and a huge number of publications, 

sometimes conflicting with one another, appearing every 
day. Besides, a few cases of medical data falsification were 
detected. All this increased uncertainty, as well as a high 
workload of medical personnel in COVID-19 centers [1].

To assist physicians, research groups in IT started 
developing decision support systems (DSS) to mitigate 
different aspects of the pandemic [2]. Thus, paper [3] 
investigates the issues of constructing a simple patient 
condition severity classifier based on remote survey data 
to adjust medical logistics. System [4] developed by Sapio 
Analytics is planned as a tool to optimize quarantine 
regime. Project Vida, proposed by a team of scientists 
from the MIT, aims to conduct a comprehensive analysis 
of the situation in a region (involving geographic infor-
mation systems data) for the subsequent construction of 
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SARS-CoV2 propagation models and assessment of its 
impacts on socio-economic indicators [5, 6]. Study [7] 
investigates the dependence of pandemic spread veloc-
ity on the measures of epidemic control. Similarly, in [8], 
mortality predictions are made in real time basing on 
current epidemic data. Various platforms for the remote 
provision of medical services via the Internet are also 
offered [9].

At the same time, the accumulation of inpatients data 
while in hospital allowed for a variety of forecasting 
models for predicting the likelihood of infection and 
the severity of disease basing on case history, demo-
graphic and clinical parameters as well as laboratory tests 
[10–15].

These models were conceived as a way to help physi-
cians (including non-infectious specializations), operat-
ing in centers for the treatment of COVID-19. However, 
in spite of all the above mentioned factors, the effective-
ness of these tools in clinical practice remains very lim-
ited [16]. We consider the following main reasons for 
delaying the implementation of the decision-making sys-
tems that are so necessary during a pandemic. 

1. Differences in hospital structure and equipment

 Patient management practices, the severity of cases 
admitted to a hospital, the possibility for conducting 
expensive laboratory tests on a regular basis, con-
gestion in intensive care units (ICUs) have a strong 
impact on the main endpoints of the above studies. 
Thus, forecasting models built in the context of large, 
well-equipped hospitals may not be applicable in typ-
ical conditions in regional clinics or clinics in devel-
oping countries, and vice versa.

2. Significant percentage of non-infectionists working in 
COVID-19 treatment centers

 Refurbishment of non-infection hospitals was often 
carried out to cope with the outbreak of cases. Spe-
cialists in other medical fields who had no experience 
in the treatment of infectious diseases were rapidly 
involved in the work. In addition to the direct super-
vision of patients, they simultaneously faced the need 
to bridge a knowledge gap. The simple use of com-
puter predictors that form a binary response (e.g. 
”death”/”recovery”) doesn’t contribute to the devel-
opment of clinical skills, but, on the contrary, could 
introduce an element of formality in the doctor’s 
work.

3. Lack of medications with a proven effectiveness
 History has shown that during a rapid spread of a 

previously unknown infection, the standard prac-
tice of conducting clinical trials of medications has 
intolerably long lags. The off-label use of medications 

basing on results obtained in vitro, or in the absence 
of randomization and blinding often turned out to 
be ineffective, and, in some cases, even dangerous. 
An example is the widespread use of combinations 
of drugs based on hydroxychloroquine and ART at 
the initial stages of the pandemic, the expediency of 
which was then refuted [17, 18]. Therefore, inform-
ing the physician about a patient’s high risk of ICU 
admission (or death) in the absence of effective pre-
vention therapy may cause unnecessary stress or, 
conversely, personnel passivity during treatment.

4. Skeptical attitude to the published information
 Unfortunately, the COVID-19 pandemic is also 

accompanied by a series of scandals related to unfair 
testing and falsification of results. The most noticea-
ble of these cases concerns the activities of the Surgi-
sphere Company, which was found to have provided 
unreliable medical data for several studies [19]. As 
a result, a few articles published in well-established 
journals The Lancet and The New England Journal of 
Medicine, were subsequently withdrawn [20, 21]. All 
this reduces the level of trust of medical profession-
als in the published data and makes them unwilling 
to rely on the experience of other organizations.

5. Low usability of proposed approaches
 As was shown before, a convenient graphical user 

interface is crucial for making the application attrac-
tive for every-day usage in a stressful environment 
[22]. Despite a few such apps developed recently (e.g. 
those presented in [23–25]), the lack of usability of 
COVID-19 decision support tools is still noticeable.

Thus, the attitude of clinicians to the published decision 
support systems can be reduced to the formula ”Abstract 
models based on irrelevant or falsified data urging to 
unknown actions”. This inspired us to implement a differ-
ent medical informatics approach for helping physicians.

Objectives
When developing a decision support system at Saint-
Petersburg Pavlov University, we set the goal of creating 
an application with a graphical interface with the help of 
which a doctor, having entered a relatively small num-
ber of indicators of their patient, could find in the data-
base (DB) the most similar cases recorded in the hospital 
earlier. Having studied the therapies applied earlier and 
what outcomes they have led to, the doctor can adjust the 
course of treatment and, if necessary, consult their col-
leagues who supervised previous patients. It is obvious 
that due to the uniqueness of each individual patient, the 
search based on the exact match of all clinically signifi-
cant symptoms is hardly possible.

Hence, we decided to implement a fuzzy search sys-
tem that allows incomplete data matching. Fuzzy search 
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systems for medical data have been actively discussed 
recently in relation to computerization of medical institu-
tions and the growth of stored information volume. Some 
of them are mainly focused on searching for patients 
based on incomplete or mistakenly entered identifica-
tion data (full name, date of birth, sex, policy number, 
etc.) [26–29]. The others utilize the more sophisiticated 
approach named ”patient-like-mine”, which implies 
aggregating previous electronic health records for 
searching clinically-similar patients in a hospital history 
[30–32]. These systems may have quite a complex struc-
ture and require a deep integration with a local health 
information system (HIS). All this made it difficult to 
develop and introduce them into clinical practice imme-
diately after the pandemic outbreak.

To address the challenge, we set the following tasks:

– Select software tools which allow fast prototyping and 
deployment in the local network by work of a biostatis-
tician unit without the involvement of third parties and 
without a modification in the local HIS.

– Create and pre-process a dataset containing data for all 
the patients in the COVID-19 treatment center, includ-
ing case data, demography, anthropometry and daily 
results of laboratory tests.

– Select a relatively brief list of patient features that 
contain a sufficient amount of information about a 
patient’s current condition.

– Develop a fuzzy search system that takes in the instant 
values of the current patient features entered by the 
doctor, and outputs a set of the most similar cases, 
indicating the ID numbers of past patients and the days 
of hospitalization when this similarity was noticed.

– Implement a graphical user interface (GUI) that rep-
resents the information found in a user-friendly form 
and allows the doctor to quickly navigate the cases 
under consideration.

Methods
Software tools
R version 3.6.3 was chosen as the main programming lan-
guage [33]. The list of the main R packages used in the 
project is given in Table 1.

Generation of initial dataset
From the local health information system (HIS), we 
downloaded 6 separate datasets which stored data about 
the patients’ states: 

1. Registration data: the date of intake, the number of 
bed-days in the hospital, the treatment outcome.

2. Demographic and anthropometric data: age, sex, 
height, weight (combined later into BMI).

3. Anamnestic data: the number of days of illness, the 
presence of chronic diseases, the smoking status.

4. Results of biochemical tests: ALT, AST, amylase, 
bilirubin, bound bilirubin, creatinine, SRP, D-dimer, 
fibrinogen, ferritin, glucose, glucose ABB, lactate 
ABB, potassium, potassium ABB, sodium, sodium 
ABB, total protein, troponin I, urea.

5. Results of a blood differential test: total leukocytes, 
neutrophils, monocytes, platelets, lymphocytes, 
hemoglobin.

6. NEWS scale components: heart rate (HR), respira-
tory rate (RR), systolic blood pressure, temperature, 
saturation, need for additional oxygenation, AVPU 
score.

All the datasets contained the key field Patient ID. 
Datasets 4-6 were downloaded in a long format with 
reference to the date of the tests. Further, all the data-
sets were combined into a single array, one line of 
which corresponded to one day of hospitalization of 
one patient. The values in the columns corresponded 
to the results of tests taken on a particular day. If on 
one of the days a certain test was taken several times, 
the median of the measured values was entered in the 
table. The illustration of the process of forming the 
source dataset is shown in Figure 1. Next, missing val-
ues were filled in using last observation carried forward 
procedure (LOCF) [39].

Features selection
For the selection of the main features which reflect 
the condition of the patient, we conducted training of 
a set of standard machine learning algorithms: logis-
tic regression, random forest, k-nearest neighbors, 
support vector machine and gradient boosting. The 
results of the algorithms were checked using k-fold 

Table 1 R packages used in the project

Purpose Packages Reference

Data pre-processing tidyr [34]

Application of machine learning meth-
ods for main features selection

caret [35]

Vizualization of health information data ggplot2 ggpubr [36, 37]

Building of GUI shiny [38]
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cross-validation. For the best classifier (in terms of 
area under the curve, AUC), the features were arranged 
according to their importance. Top 12 clinical and labo-
ratory features were selected from this list, where sex 
and age were also added. Thus, the selection of similar 
cases was carried out basing on 14 features.

Fuzzy search
To carry out the search, a shortened version of the data-
set was prepared to contain only the patients’ registra-
tion numbers, the order number of the day of hospital 
stay, and the 14 previously selected features. The sex was 
coded with numbers 0 (female) and 1 (male). All the fea-
ture columns were scaled by calculating the z-score statis-
tics. As a measure of differences, the following distances 
were considered: Minkowski (including Manhattan and 
Euclidian distances as special cases), Machalanobis and 
Spearman [40]. As a result of the search, a list of the most 
similar patients was formed with indicating the day for 
which the degree of similarity was maximal.

Results
General description of DSS
The general structural diagram of the developed DSS 
is shown in Figure  2. An employee of the biostatistics 

department of the clinic downloads 6 raw datasets from 
the local HIS, which are further to be combined into a 
single dataset according to the principle described in 
Subsection 3.2. Next, the outliers are analyzed manually 
by finding abnormally large or small values in the data. 
The detected outliers are discussed with the clinicians 
for their correctness and the necessity of their exclu-
sion from the dataset. On the cleaned dataset, a list of 
the most important features is selected, so that doctors 
are able to search for analogies. Then the shortened ver-
sion of the dataset is uploaded to the application server. 
On running the application, it loads the dataset and, 
based on the available columns, synthesizes the input 
fields for a graphical user interface (GUI). After enter-
ing the features of a patient whose condition the doctor 
doubts, the GUI displays a brief information on similar 
cases recorded earlier. Having selected the analogies that 
deserve the most attention (for example, cases in which 
a complication has developed), the doctor can obtain a 
detailed diary of the cases from the HIS using the regis-
tration numbers of the patients.

The first test version of the software was based on data 
from the patients who were hospitalized at the Center for 
the treatment of the new coronavirus infection at hospi-
tal throughout May 2020. Subsequently, the system was 

ID Day Age ... Smoking ... ALT ... WBC ... HRR ...

ID Hosp. 
duration Outcome

AA 8 Discharge

BB 20 Death

CC 15 Discharge

Hosp. 
duration Outcome

ID

AA

BB

CC

Age ...

55 ...

72 ...

30 ...

General data Demography

ID

AA

BB

CC

Smoking ...

Y ...

Y ...

N ...

Anamnesis

ID

AA

BB

CC

Analysis Res.

AST 30

CRP 10

ALT 50

Biochemistry

Day

1

1

1

AA ALT 251

AA CRP 602

AA AST 503

BB AST 1003

CC CRP 101

AST CRP

ID

AA

Analysis Res.

WBC 5

Day

1

... ... ......

AA WBC 102

Clinical blood test

... ... ......

BB WBC 72

... ... ......

CC WBC 153

... ... ......

AA 1 55 ... Y ... 30 ... 5 ... 15 ...8 Discharge 25  

AA 2 55 ... Y ...  ... 10 ... 17 ...8 Discharge  60

AA 3 55 ... Y ...  ...  ... 16 ...8 Discharge 50  

BB 1 72 ... Y ... ...  ... 20 ...20 Death  10

BB 2 72 ... Y ...  ... 7 ... 25 ...20 Death   

BB 3 72 ... Y ...  ...  ...  ...20 Death 100  

CC 1 30 ... N ... 50 ...  ... 18 ...15 Discharge  10

CC 2 30 ... N ...  ...  ... 14 ...15 Discharge   

CC 3 30 ... N ...  ... 15 ...  ...15 Discharge   

NEWS

ID

AA

HR

70

Day

1

AA 602

AA 753

BB 901

BB 952

CC 651

CC 622

RR

15

17

16

20

25

18

14

...

...

...

...

...

...

...

...

Fig. 1 The principle of formation of the initial dataset
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updated bi-weekly as the patient data in the local HIS 
were growing. The current version of the DSS database 
(as of September 1, 2020) is based on the information on 
1572 patients with a median follow-up time of 8 days.

Selection of main patient features
For the selection of the most important attributes that 
describe the condition of a patient with COVID-19, 
we have trained a few machine learning models. The 
independent variables were the values of the features 
recorded on a particular day (see Subsection 3.3).

The dependent variable was the fact that the patient 
entered the intensive care unit within a week from the 
time of taking the tests. The resulting ROC - curves plot-
ted on the basis of all analyzed attributes are shown in 
Figure  3a. As you can see, the random forest algorithm 
turned out to be the best in terms of AUC (AUC = 0.9). 
For this algorithm, the features were ranked according to 
their importance using the VarImp function. The results 
are shown in Figure 3b (the first 20 attributes are given).

Further on, the minimum number of attributes pro-
viding AUC at 0.9 level were selected (their number was 
12). The ROC-curves, built using these 12 features, are 
shown in Figure 3c. As one can see, in the random for-
est method, the AUC value remained at the level of 0.9, 

which indicates that the selected features contain a sig-
nificant amount of information about the patient’s condi-
tion. Later, age and sex were added to them as well. Thus, 
at the moment, the determination of the patient’s current 
state is made according to the following 14 features:

– demography: age, sex;
– clinical blood test: hemoglobin, as well as the abso-

lute values of platelets, lymphocytes and neutrophils;
– biochemistry: SRP, procalcitonin, ferritin, creatinine, 

glucose, AST;
– vital indicators: SpO2, RR.

Graphical user interface
Figure  4 shows an example of a graphical user inter-
face. On the left panel there are elements for entering 
patient data, on the right - the search results in the 
database. For similar cases found, a brief summary is 
provided indicating the patient ID, full name, the date 
on which the entered data match as much as possible, 
some demographic and clinical laboratory parameters, 
as well as the outcome of hospital stay. There is also a 
histogram of outcomes for the detected similar cases, 

LAN

App server HIS server
Biostatistician

workplace

Medical staff workplaces

Raw datsetsDataset for 
fuzzy searchPatient 

features

IDs of similar 
patients

Selected IDs

Detailed information 
about selected patients

Fig. 2 The structure of the developed DSS
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which allows us to quickly navigate for the severity of 
the patient’s condition. Using the patient’s ID obtained 
as a result of the search, we can then get a detailed 
diary of their stay in the hospital from the HIS.

Discussion
Our experience of deploying the developed system in 
the hospital showed a great interest in such tools on 
the part of medical workers. The lack of unambiguous 
instructions issued by the application helps reduce the 
level of skepticism and rejection among experienced 
doctors. At the same time, the need to independently 
draw conclusions on complex cases based on the study 
of several case histories improves qualifications and 
speed of immersion into a new subject area for doctors 
in related specializations.

Since the application deployment, more than 200 
queries were addressed to the DSS. Their analysis 
showed that our system turned out to be particularly 
useful in the following three use-cases as stated by 
physicians. 

1. Hesitation about the application of a medicine with 
controversial effects. Particularly we noticed that early 
application of dexamethasone didn’t prevent patients 
in moderate conditions from developing severe com-
plications. This finding was later rigorously proved in 
RECOVERY project [41].

2. Optimization of a testing plan for a particular 
patient. The study of similar cases may help foresee 
a rapid deterioration of a patient’s condition, which 
provides good reason for making particular medical 
tests more frequently.

3. Forming a pool of patients for a further rehabilita-
tion program. Observing long-term consequences 
for similar patients who were discharged earlier, we 
may add the analyzed patient to the invitation list for 
a consequent rehabilitation program.

In terms of choice of tools for DSS development in a 
pandemic, our conclusions are consistent with those of 
the authors of work [42]: in an unexpectedly changing 
environment, the choice of tools is determined by their 
potential for a rapid prototyping using ready-made mod-
ules. In this sense, R and Shiny are one of the best com-
binations of software. In our case, the development and 
deployment of the first version of the DSS took no more 
than a week, which made it possible to begin intensive 
testing of the proposed approach shortly after the open-
ing of the COVID-19 Treatment Center.

Conclusion
The study showed a great potential for the application 
of DSS based on fuzzy search of information in condi-
tions of uncertainty at the time of a pandemic caused by 
a poorly known pathogen. Our experience points to the 
possibility of the use of such systems both to support 
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decisions taken by doctors, and to train medical staff. 
Besides, optimization of a testing plan for the patients 
may decrease a financial burden on the hospital during a 
high stress period.

The following future directions for the system improve-
ment may be proposed: 

1. Integrate the developed DSS into HIS for the autom-
atization of the entering of features and the extract-
ing of the cases found.

2. Propose advanced vizualization for the data to speed 
up the comprehensive analysis of the patient state.

3. Extend the search data from instant values to time-
series chunks with the potential application of 
dimension reduction techniques [43].
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