Abstract
Astrocytes perform essential functions in the preservation of neural tissue. For this reason, these cells can respond with changes in gene expression, hypertrophy, and proliferation upon a traumatic brain injury event (TBI). Different therapeutic strategies may be focused on preserving astrocyte functions and favor a non-generalized and non-sustained protective response over time post-injury. A recent strategy has been the use of the conditioned medium of human adipose mesenchymal stem cells (CM-hMSCA) as a therapeutic strategy for the treatment of various neuropathologies. However, although there is a lot of information about its effect on neuronal protection, studies on astrocytes are scarce and its specific action in glial cells is not well explored. In the present study, the effects of CM-hMSCA on human astrocytes subjected to scratch assay were assessed. Our findings indicated that CM-hMSCA improved cell viability, reduced nuclear fragmentation, and preserved mitochondrial membrane potential. These effects were accompanied by morphological changes and an increased polarity index thus reflecting the ability of astrocytes to migrate to the wound stimulated by CM-hMSCA. In conclusion, CM-hMSCA may be considered as a promising therapeutic strategy for the protection of astrocyte function in brain pathologies.
This is a preview of subscription content, access via your institution.









Abbreviations
- BSS0:
-
balanced salt solution
- bFGF:
-
basic fibroblast growth factor
- CNS:
-
central nervous system
- CMhMSCA:
-
conditioned medium of human adipose mesenchymal stem cells
- DMSO:
-
dimethyl sulfoxide
- DMEM:
-
Dulbecco’s modified Eagle’s medium
- EGF:
-
epidermal growth factor
- FBS:
-
fetal bovine serum
- GFAP:
-
glial fibrillary acid protein
- GPX1:
-
glutathione peroxidase
- HB-EGF:
-
heparin-binding epidermal growth factor-like growth factor
- HSPG:
-
heparan sulfate proteoglycans
- hMSCA:
-
human mesenchymal stem cells from adipose tissue
- MSCs:
-
mesenchymal stem cells
- MTT:
-
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- Ngb:
-
neuroglobin
- PBS:
-
phosphate-buffered saline
- ROS:
-
reactive oxygen species
- SOD2:
-
superoxide dismutase 2
- TMRM:
-
tetramethylrhodamine methyl ester
- TGFbeta 1:
-
transforming growth factor beta 1
- TBI:
-
traumatic brain injury
References
- 1.
Barreto G, White RE, Ouyang Y, Xu L, Giffard RG (2011) Astrocytes: targets for neuroprotection in stroke. [Research Support, N.I.H., Extramural Review]. Cent Nerv Syst Agents Med Chem 11(2):164–173
- 2.
Sun D, Jakobs TC (2012) Structural remodeling of astrocytes in the injured CNS. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov'tReview]. Neuroscientist 18(6):567–588. https://doi.org/10.1177/1073858411423441
- 3.
Myer DJ, Gurkoff GG, Lee SM, Hovda DA, Sofroniew MV (2006) Essential protective roles of reactive astrocytes in traumatic brain injury. [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Brain 129(Pt 10):2761–2772. https://doi.org/10.1093/brain/awl165
- 4.
Panickar KS, Norenberg MD (2005) Astrocytes in cerebral ischemic injury: morphological and general considerations. Glia 50(4):287–298. https://doi.org/10.1002/glia.20181
- 5.
Steele ML, Robinson SR (2012) Reactive astrocytes give neurons less support: implications for Alzheimer's disease. [Research Support, Non-U.S. Gov't]. Neurobiol Aging 33(2):423 e421-413. https://doi.org/10.1016/j.neurobiolaging.2010.09.018
- 6.
Hamby ME, Sofroniew MV (2010) Reactive astrocytes as therapeutic targets for CNS disorders. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Neurotherapeutics 7(4):494–506. https://doi.org/10.1016/j.nurt.2010.07.003
- 7.
Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. [Research Support, Non-U.S. Gov't Review]. Glia 50(4):427–434. https://doi.org/10.1002/glia.20207
- 8.
Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Trends Neurosci 32(12):638–647. https://doi.org/10.1016/j.tins.2009.08.002
- 9.
Pekny M, Pekna M, Messing A, Steinhauser C, Lee JM, Parpura V et al (2016) Astrocytes: a central element in neurological diseases. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Acta Neuropathol 131(3):323–345. https://doi.org/10.1007/s00401-015-1513-1
- 10.
Bardehle S, Kruger M, Buggenthin F, Schwausch J, Ninkovic J, Clevers H et al (2013) Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. [Research Support, Non-U.S. Gov't]. Nat Neurosci 16(5):580–586. https://doi.org/10.1038/nn.3371
- 11.
Pekny M, Pekna M (2016) Reactive gliosis in the pathogenesis of CNS diseases. Biochim Biophys Acta 1862(3):483–491. https://doi.org/10.1016/j.bbadis.2015.11.014
- 12.
Sofroniew MV (2005) Reactive astrocytes in neural repair and protection. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. Review]. Neuroscientist (11, 5):400–407. https://doi.org/10.1177/1073858405278321
- 13.
Su J, Wang L (2012) Research advances in neonatal hypoglycemic brain injury. [Review]. Transl Pediatr 1(2):108–115. https://doi.org/10.3978/j.issn.2224-4336.2012.04.06
- 14.
Qiu C, Sigurdsson S, Zhang Q, Jonsdottir MK, Kjartansson O, Eiriksdottir G et al (2014) Diabetes, markers of brain pathology and cognitive function: the age, gene/environment susceptibility-Reykjavik study. [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't]. Ann Neurol 75(1):138–146. https://doi.org/10.1002/ana.24063
- 15.
Langlois JA, Rutland-Brown W, Wald MM (2006) The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil 21(5):375–378
- 16.
Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. [Research Support, Non-U.S. Gov't]. PLoS Med 3(11):e442. https://doi.org/10.1371/journal.pmed.0030442
- 17.
Tagliaferri F, Compagnone C, Korsic M, Servadei F, Kraus J (2006) A systematic review of brain injury epidemiology in Europe. [Research Support, Non-U.S. Gov't Review]. Acta Neurochir (Wien) 148(3):255–268; discussion 268. https://doi.org/10.1007/s00701-005-0651-y
- 18.
Prins M, Greco T, Alexander D, Giza CC (2013) The pathophysiology of traumatic brain injury at a glance. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Dis Model Mech 6(6):1307–1315. https://doi.org/10.1242/dmm.011585
- 19.
Seaquist ER (2015) The impact of diabetes on cerebral structure and function. [Research Support, N.I.H., Extramural Review]. Psychosom Med 77(6):616–621. https://doi.org/10.1097/PSY.0000000000000207
- 20.
Stiles MC, Seaquist ER (2010) Cerebral structural and functional changes in type 1 diabetes. [Review]. Minerva Med 101(2):105–114
- 21.
Dennis EL, Faskowitz J, Rashid F, Babikian T, Mink R, Babbitt C et al (2017) Diverging volumetric trajectories following pediatric traumatic brain injury. Neuroimage Clin 15:125–135. https://doi.org/10.1016/j.nicl.2017.03.014
- 22.
Meadows EA, Owen Yeates K, Rubin KH, Taylor HG, Bigler ED, Dennis M et al (2017) Rejection sensitivity as a moderator of psychosocial outcomes following pediatric traumatic brain injury. J Int Neuropsychol Soc:1–9. https://doi.org/10.1017/S1355617717000352
- 23.
Calviello LA, Donnelly J, Zeiler FA, Thelin EP, Smielewski P, Czosnyka M (2017) Cerebral autoregulation monitoring in acute traumatic brain injury: what’s the evidence? Minerva Anestesiol. 10.23736/S0375-9393.17.12043-2
- 24.
Yasen AL, Howell DR, Chou LS, Pazzaglia AM, Christie AD (2017a) Cortical and physical function after mild traumatic brain injury. Med Sci Sports Exerc 49(6):1066–1071. https://doi.org/10.1249/MSS.0000000000001217
- 25.
Yasen AL, Howell DR, Chou LS, Pazzaglia AM, Christie AD (2017b) Cortical and physical function following mild traumatic brain injury. Med Sci Sports Exerc. https://doi.org/10.1249/MSS.0000000000001217
- 26.
Janowitz T, Menon DK (2010) Exploring new routes for neuroprotective drug development in traumatic brain injury. [Research Support, Non-U.S. Gov't]. Sci Transl Med 2(27):27rv21. https://doi.org/10.1126/scitranslmed.3000330
- 27.
Burda JE, Bernstein AM, Sofroniew MV (2016) Astrocyte roles in traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, Non-U.S. gov't Review]. Exp Neurol 275(Pt 3):305–315. https://doi.org/10.1016/j.expneurol.2015.03.020
- 28.
Karve IP, Taylor JM, Crack PJ (2016) The contribution of astrocytes and microglia to traumatic brain injury. [Review]. Br J Pharmacol 173(4):692–702. https://doi.org/10.1111/bph.13125
- 29.
Salgado, A. J., Sousa, J. C., Costa, B. M., Pires, A. O., Mateus-Pinheiro, A., Teixeira, F., . . . Sousa, N. (2015). Mesenchymal stem cells secretome as a modulator of the neurogenic niche: basic insights and therapeutic opportunities. Front Cell Neurosci, 9
- 30.
Teixeira FG, Carvalho MM, Sousa N, Salgado AJ (2013) Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? [Research Support, Non-U.S. Gov't Review]. Cell Mol Life Sci 70(20):3871–3882. https://doi.org/10.1007/s00018-013-1290-8
- 31.
Yamazaki H, Jin Y, Tsuchiya A, Kanno T, Nishizaki T (2015) Adipose-derived stem cell-conditioned medium ameliorates antidepression-related behaviors in the mouse model of Alzheimer's disease. Neurosci Lett 609:53–57. https://doi.org/10.1016/j.neulet.2015.10.023
- 32.
Cho YJ, Song HS, Bhang S, Lee S, Kang BG, Lee JC et al (2012) Therapeutic effects of human adipose stem cell-conditioned medium on stroke. [Research Support, Non-U.S. Gov't]. J Neurosci Res 90(9):1794–1802. https://doi.org/10.1002/jnr.23063
- 33.
Egashira Y, Sugitani S, Suzuki Y, Mishiro K, Tsuruma K, Shimazawa M et al (2012) The conditioned medium of murine and human adipose-derived stem cells exerts neuroprotective effects against experimental stroke model. Brain Res 1461:87–95. https://doi.org/10.1016/j.brainres.2012.04.033
- 34.
Wei X, Zhao L, Zhong J, Gu H, Feng D, Johnstone BH et al (2009) Adipose stromal cells-secreted neuroprotective media against neuronal apoptosis. Neurosci Lett 462(1):76–79. https://doi.org/10.1016/j.neulet.2009.06.054
- 35.
Zhou Z, Chen Y, Zhang H, Min S, Yu B, He B, Jin A (2013) Comparison of mesenchymal stromal cells from human bone marrow and adipose tissue for the treatment of spinal cord injury. Cytotherapy 15(4):434–448. https://doi.org/10.1016/j.jcyt.2012.11.015
- 36.
Mytych J, Lewinska A, Zebrowski J, Wnuk M (2015) Gold nanoparticles promote oxidant-mediated activation of NF-kappaB and 53BP1 recruitment-based adaptive response in human astrocytes. Biomed Res Int 2015:304575. https://doi.org/10.1155/2015/304575
- 37.
Zhang L, Wang H, Ding K, Xu J (2015a) FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells. Toxicol Lett 236(1):43–59. https://doi.org/10.1016/j.toxlet.2015.04.015
- 38.
Zhang L, Yin JC, Yeh H, Ma NX, Lee G, Chen XA et al (2015b) Small molecules efficiently reprogram human astroglial cells into functional neurons. Cell Stem Cell 17(6):735–747. https://doi.org/10.1016/j.stem.2015.09.012
- 39.
Baez-Jurado E, Vega GG, Aliev G, Tarasov VV, Esquinas P, Echeverria V, Barreto GE (2017) Blockade of neuroglobin reduces protection of conditioned medium from human mesenchymal stem cells in human astrocyte model (T98G) under a scratch assay. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0481-y
- 40.
Bourguignon LY, Gilad E, Peyrollier K, Brightman A, Swanson RA (2007) Hyaluronan-CD44 interaction stimulates Rac1 signaling and PKN gamma kinase activation leading to cytoskeleton function and cell migration in astrocytes. J Neurochem 101(4):1002–1017. https://doi.org/10.1111/j.1471-4159.2007.04485.x
- 41.
Torrente D, Avila MF, Cabezas R, Morales L, Gonzalez J, Samudio I, Barreto GE (2014) Paracrine factors of human mesenchymal stem cells increase wound closure and reduce reactive oxygen species production in a traumatic brain injury in vitro model. Hum Exp Toxicol 33(7):673–684. https://doi.org/10.1177/0960327113509659
- 42.
Loov C, Shevchenko G, Geeyarpuram Nadadhur A, Clausen F, Hillered L, Wetterhall M, Erlandsson A (2013) Identification of injury specific proteins in a cell culture model of traumatic brain injury. [Research Support, Non-U.S. Gov't]. PLoS One 8(2):e55983. https://doi.org/10.1371/journal.pone.0055983
- 43.
Avila-Rodriguez M, Garcia-Segura LM, Hidalgo-Lanussa O, Baez E, Gonzalez J, Barreto GE (2016) Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression. Mol Cell Endocrinol 433:35–46. https://doi.org/10.1016/j.mce.2016.05.024
- 44.
Avila Rodriguez M, Garcia-Segura LM, Cabezas R, Torrente D, Capani F, Gonzalez J, Barreto GE (2014) Tibolone protects T98G cells from glucose deprivation. [Research Support, Non-U.S. Gov't]. J Steroid Biochem Mol Biol 144(Pt B):294–303. https://doi.org/10.1016/j.jsbmb.2014.07.009
- 45.
Ouyang YB, Xu LJ, Emery JF, Lee AS, Giffard RG (2011) Overexpressing GRP78 influences Ca2+ handling and function of mitochondria in astrocytes after ischemia-like stress. Mitochondrion 11(2):279–286. https://doi.org/10.1016/j.mito.2010.10.007
- 46.
Lamers ML, Almeida ME, Vicente-Manzanares M, Horwitz AF, Santos MF (2011) High glucose-mediated oxidative stress impairs cell migration. PLoS One 6(8):e22865
- 47.
Paquet M, Kuwajima M, Yun CC, Smith Y, Hall RA (2006) Astrocytic and neuronal localization of the scaffold protein Na+/H+ exchanger regulatory factor 2 (NHERF-2) in mouse brain. J Comp Neurol 494(5):752–762. https://doi.org/10.1002/cne.20854
- 48.
Barreto GE, White RE, Xu L, Palm CJ, Giffard RG (2012) Effects of heat shock protein 72 (Hsp72) on evolution of astrocyte activation following stroke in the mouse. Exp Neurol 238(2):284–296. https://doi.org/10.1016/j.expneurol.2012.08.015
- 49.
Gralinski LE, Bankhead A 3rd, Jeng S, Menachery VD, Proll S, Belisle SE et al (2013) Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury. MBio 4(4). https://doi.org/10.1128/mBio.00271-13
- 50.
Aye, T., Reiss, A. L., Kesler, S., Hoang, S., Drobny, J., Park, Y.,. . . Buckingham, B. A. (2011). The feasibility of detecting neuropsychologic and neuroanatomic effects of type 1 diabetes in young children. [Research Support, N.I.H., extramural Research Support, Non-U.S. Gov't]. Diabetes Care, 34(7), 1458–1462. doi: https://doi.org/10.2337/dc10-2164
- 51.
Hershey T, Perantie DC, Warren SL, Zimmerman EC, Sadler M, White NH (2005) Frequency and timing of severe hypoglycemia affects spatial memory in children with type 1 diabetes. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.] Diabetes Care 28(10):2372–2377
- 52.
Pirici D, Mogoanta L, Margaritescu O, Pirici I, Tudorica V, Coconu M (2009) Fractal analysis of astrocytes in stroke and dementia. Romanian J Morphol Embryol 50(3):381–390
- 53.
DeRidder MN, Simon MJ, Siman R, Auberson YP, Raghupathi R, Meaney DF (2006) Traumatic mechanical injury to the hippocampus in vitro causes regional caspase-3 and calpain activation that is influenced by NMDA receptor subunit composition. [Research Support, N.I.H., Extramural]. Neurobiol Dis 22(1):165–176. https://doi.org/10.1016/j.nbd.2005.10.011
- 54.
Marklund N, Hillered L (2011) Animal modelling of traumatic brain injury in preclinical drug development: where do we go from here? [Research Support, Non-U.S. Gov't Review]. Br J Pharmacol 164(4):1207–1229. https://doi.org/10.1111/j.1476-5381.2010.01163.x
- 55.
Morrison B 3rd, Saatman KE, Meaney DF, McIntosh TK (1998) In vitro central nervous system models of mechanically induced trauma: a review. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S. Review]. J Neurotrauma 15(11):911–928. https://doi.org/10.1089/neu.1998.15.911
- 56.
Johnson KM, Milner R, Crocker SJ (2015) Extracellular matrix composition determines astrocyte responses to mechanical and inflammatory stimuli. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Neurosci Lett 600:104–109. https://doi.org/10.1016/j.neulet.2015.06.013
- 57.
Loov C, Hillered L, Ebendal T, Erlandsson A (2012) Engulfing astrocytes protect neurons from contact-induced apoptosis following injury. [Research Support, Non-U.S. Gov't]. PLoS One 7(3):e33090. https://doi.org/10.1371/journal.pone.0033090
- 58.
Brown JI, Moulton RJ, Konasiewicz SJ, Baker AJ (1998) Cerebral oxidative metabolism and evoked potential deterioration after severe brain injury: new evidence of early posttraumatic ischemia. [Research Support, Non-U.S. Gov't]. Neurosurgery 42(5):1057–1063 discussion 1063-1054
- 59.
Honda M, Ichibayashi R, Yokomuro H, Yoshihara K, Masuda H, Haga D et al (2016) Early cerebral circulation disturbance in patients suffering from severe traumatic brain injury (TBI): a xenon CT and perfusion CT study. Neurol Med Chir (Tokyo) 56(8):501–509. https://doi.org/10.2176/nmc.oa.2015-0341
- 60.
Bergsneider M, Hovda DA, Shalmon E, Kelly DF, Vespa PM, Martin NA et al (1997) Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg 86(2):241–251
- 61.
Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84(3):359–369
- 62.
Duncan T, Valenzuela M (2017) Alzheimer's disease, dementia, and stem cell therapy. [Review]. Stem Cell Res Ther 8(1):111. https://doi.org/10.1186/s13287-017-0567-5
- 63.
Xu C, Fu F, Li X, Zhang S (2017) Mesenchymal stem cells maintain the microenvironment of central nervous system by regulating the polarization of macrophages/microglia after traumatic brain injury. Int J Neurosci:1–39. https://doi.org/10.1080/00207454.2017.1325884
- 64.
Hoch AI, Binder BY, Genetos DC, Leach JK (2012) Differentiation-dependent secretion of proangiogenic factors by mesenchymal stem cells. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. PLoS One 7(4):e35579. https://doi.org/10.1371/journal.pone.0035579
- 65.
Jain A, McKeon RJ, Brady-Kalnay SM, Bellamkonda RV (2011) Sustained delivery of activated Rho GTPases and BDNF promotes axon growth in CSPG-rich regions following spinal cord injury. [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.] PLoS One 6(1):e16135. https://doi.org/10.1371/journal.pone.0016135
- 66.
Pawitan JA (2014) Prospect of stem cell conditioned medium in regenerative medicine. [Research Support, Non-U.S. Gov't]. Biomed Res Int 2014:965849. https://doi.org/10.1155/2014/965849
- 67.
Baglio SR, Pegtel DM, Baldini N (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 3:359. https://doi.org/10.3389/fphys.2012.00359
- 68.
Sun H, Benardais K, Stanslowsky N, Thau-Habermann N, Hensel N, Huang D et al (2013) Therapeutic potential of mesenchymal stromal cells and MSC conditioned medium in amyotrophic lateral sclerosis (ALS)—in vitro evidence from primary motor neuron cultures, NSC-34 cells, astrocytes and microglia. [Research Support, Non-U.S. Gov't]. PLoS One 8(9):e72926. https://doi.org/10.1371/journal.pone.0072926
- 69.
Huang W, Lv B, Zeng H, Shi D, Liu Y, Chen F et al (2015) Paracrine factors secreted by MSCs promote astrocyte survival associated with GFAP downregulation after ischemic stroke via p38 MAPK and JNK. [Research Support, Non-U.S. Gov't]. J Cell Physiol 230(10):2461–2475. https://doi.org/10.1002/jcp.24981
- 70.
Song M, Jue SS, Cho YA, Kim EC (2015) Comparison of the effects of human dental pulp stem cells and human bone marrow-derived mesenchymal stem cells on ischemic human astrocytes in vitro. [Research Support, Non-U.S. Gov't]. J Neurosci Res 93(6):973–983. https://doi.org/10.1002/jnr.23569
- 71.
Holtje M, Hoffmann A, Hofmann F, Mucke C, Grosse G, Van Rooijen N et al (2005) Role of Rho GTPase in astrocyte morphology and migratory response during in vitro wound healing. [Comparative Study Research Support, Non-U.S. Gov't]. J Neurochem 95(5):1237–1248. https://doi.org/10.1111/j.1471-4159.2005.03443.x
- 72.
Robel S, Bardehle S, Lepier A, Brakebusch C, Gotz M (2011) Genetic deletion of cdc42 reveals a crucial role for astrocyte recruitment to the injury site in vitro and in vivo. [Research Support, Non-U.S. Gov't Video-Audio Media]. J Neurosci 31(35):12471–12482. https://doi.org/10.1523/JNEUROSCI.2696-11.2011
- 73.
Ding S (2014) Dynamic reactive astrocytes after focal ischemia. Neural Regen Res 9(23):2048–2052. https://doi.org/10.4103/1673-5374.147929
- 74.
Oberheim NA, Tian GF, Han X, Peng W, Takano T, Ransom B, Nedergaard M (2008) Loss of astrocytic domain organization in the epileptic brain. J Neurosci 28(13):3264–3276. https://doi.org/10.1523/JNEUROSCI.4980-07.2008
- 75.
Sun D, Lye-Barthel M, Masland RH, Jakobs TC (2010) Structural remodeling of fibrous astrocytes after axonal injury. J Neurosci 30(42):14008–14019. https://doi.org/10.1523/JNEUROSCI.3605-10.2010
- 76.
Wilhelmsson U, Li L, Pekna M, Berthold CH, Blom S, Eliasson C et al (2004) Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration. J Neurosci 24(21):5016–5021. https://doi.org/10.1523/JNEUROSCI.0820-04.2004
- 77.
Xiong, J., Dai, W., Chen, L., Liu, G., Liu, M., Zhang, Z., & Xiao, H. (2006). New method for studying the relationship between morphological parameters and cell viability.
- 78.
Baez E, Guio-Vega GP, Echeverria V, Sandoval-Rueda DA, Barreto GE (2017) 4′-Chlorodiazepam protects mitochondria in T98G astrocyte cell line from glucose deprivation. Neurotox Res. https://doi.org/10.1007/s12640-017-9733-x
- 79.
Cano V, Valladolid-Acebes I, Hernandez-Nuno F, Merino B, Del Olmo N, Chowen JA, Ruiz-Gayo M (2014) Morphological changes in glial fibrillary acidic protein immunopositive astrocytes in the hippocampus of dietary-induced obese mice. Neuroreport. https://doi.org/10.1097/WNR.0000000000000180
- 80.
Gzielo K, Kielbinski M, Ploszaj J, Janeczko K, Gazdzinski SP, Setkowicz Z (2017) Long-term consumption of high-fat diet in rats: effects on microglial and astrocytic morphology and neuronal nitric oxide synthase expression. Cell Mol Neurobiol 37(5):783–789. https://doi.org/10.1007/s10571-016-0417-5
- 81.
Kane CJ, Phelan KD, Douglas JC, Wagoner G, Johnson JW, Xu J et al (2014) Effects of ethanol on immune response in the brain: region-specific changes in adolescent versus adult mice. [Research Support, N.I.H., Extramural]. Alcohol Clin Exp Res 38(2):384–391. https://doi.org/10.1111/acer.12244
- 82.
Saur L, Baptista PP, de Senna PN, Paim MF, do Nascimento P, Ilha J et al (2014) Physical exercise increases GFAP expression and induces morphological changes in hippocampal astrocytes. [Research Support, Non-U.S. Gov't]. Brain Struct Funct 219(1):293–302. https://doi.org/10.1007/s00429-012-0500-8
- 83.
Vardjan N, Kreft M, Zorec R (2014) Dynamics of beta-adrenergic/cAMP signaling and morphological changes in cultured astrocytes. [Research Support, Non-U.S. Gov't]. Glia 62(4):566–579. https://doi.org/10.1002/glia.22626
- 84.
Fedoroff S, McAuley WA, Houle JD, Devon RM (1984) Astrocyte cell lineage. V. Similarity of astrocytes that form in the presence of dBcAMP in cultures to reactive astrocytes in vivo. [Comparative Study Research Support, Non-U.S. Gov't]. J Neurosci Res 12(1):14–27. https://doi.org/10.1002/jnr.490120103
- 85.
Paco S, Hummel M, Pla V, Sumoy L, Aguado F (2016) Cyclic AMP signaling restricts activation and promotes maturation and antioxidant defenses in astrocytes. [Research Support, Non-U.S. Gov't]. BMC Genomics 17:304. https://doi.org/10.1186/s12864-016-2623-4
- 86.
Tiryaki VM, Ayres VM, Ahmed I, Shreiber DI (2015) Differentiation of reactive-like astrocytes cultured on nanofibrillar and comparative culture surfaces. [Research Support, American Recovery and Reinvestment Act Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.] Nanomedicine (Lond) 10(4):529–545. https://doi.org/10.2217/nnm.14.33
- 87.
Kang W, Hebert JM (2011) Signaling pathways in reactive astrocytes, a genetic perspective. [Review]. Mol Neurobiol 43(3):147–154. https://doi.org/10.1007/s12035-011-8163-7
- 88.
Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000). [Historical Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S. Review]. Neurochem Res 25(9–10):1439–1451
- 89.
Placone AL, McGuiggan PM, Bergles DE, Guerrero-Cazares H, Quinones-Hinojosa A, Searson PC (2015) Human astrocytes develop physiological morphology and remain quiescent in a novel 3D matrix. [Research Support, N.I.H., Extramural]. Biomaterials 42:134–143. https://doi.org/10.1016/j.biomaterials.2014.11.046
- 90.
Bozoyan L, Khlghatyan J, Saghatelyan A (2012) Astrocytes control the development of the migration-promoting vasculature scaffold in the postnatal brain via VEGF signaling. J Neurosci 32(5):1687–1704. https://doi.org/10.1523/JNEUROSCI.5531-11.2012
- 91.
Faber-Elman A, Lavie V, Schvartz I, Shaltiel S, Schwartz M (1995) Vitronectin overrides a negative effect of TNF-alpha on astrocyte migration. FASEB J 9(15):1605–1613
- 92.
Jacobsen CT, Miller RH (2003) Control of astrocyte migration in the developing cerebral cortex. Dev Neurosci 25(2-4):207–216
- 93.
Rolls A, Shechter R, Schwartz M (2009) The bright side of the glial scar in CNS repair. Nat Rev Neurosci 10(3):235–241. https://doi.org/10.1038/nrn2591
- 94.
Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Genomic analysis of reactive astrogliosis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. J Neurosci 32(18):6391–6410. https://doi.org/10.1523/JNEUROSCI.6221-11.2012
- 95.
Yoon BS, Moon JH, Jun EK, Kim J, Maeng I, Kim JS et al (2010) Secretory profiles and wound healing effects of human amniotic fluid-derived mesenchymal stem cells. [Research Support, Non-U.S. Gov't]. Stem Cells Dev 19(6):887–902. https://doi.org/10.1089/scd.2009.0138
- 96.
Chen J, Li Y, Hao H, Li C, Du Y, Hu Y et al (2015) Mesenchymal stem cell conditioned medium promotes proliferation and migration of alveolar epithelial cells under septic conditions in vitro via the JNK-P38 signaling pathway. Cell Physiol Biochem 37(5):1830–1846. https://doi.org/10.1159/000438545
- 97.
Frese L, Dijkman PE, Hoerstrup SP (2016) Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemother 43(4):268–274. https://doi.org/10.1159/000448180
- 98.
Shen C, Lie P, Miao T, Yu M, Lu Q, Feng T et al (2015) Conditioned medium from umbilical cord mesenchymal stem cells induces migration and angiogenesis. Mol Med Rep 12(1):20–30. https://doi.org/10.3892/mmr.2015.3409
- 99.
Kilroy GE, Foster SJ, Wu X, Ruiz J, Sherwood S, Heifetz A et al (2007) Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. J Cell Physiol 212(3):702–709. https://doi.org/10.1002/jcp.21068
- 100.
Linero I, Chaparro O (2014) Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. [Research Support, Non-U.S. Gov't]. PLoS One 9(9):e107001. https://doi.org/10.1371/journal.pone.0107001
- 101.
Fok-Seang J, Smith-Thomas LC, Meiners S, Muir E, Du JS, Housden E et al (1995) An analysis of astrocytic cell lines with different abilities to promote axon growth. [Comparative Study Research Support, Non-U.S. Gov't]. Brain Res 689(2):207–223
- 102.
Beller JA, Snow DM (2014) Proteoglycans: road signs for neurite outgrowth. Neural Regen Res 9(4):343–355. https://doi.org/10.4103/1673-5374.128235
- 103.
Bovolenta P, Fernaud-Espinosa I (2000) Nervous system proteoglycans as modulators of neurite outgrowth. Prog Neurobiol 61(2):113–132
- 104.
Walter MN, Kohli N, Khan N, Major T, Fuller H, Wright KT et al (2015) Human mesenchymal stem cells stimulate EaHy926 endothelial cell migration: combined proteomic and in vitro analysis of the influence of donor-donor variability. J Stem Cells Regen Med 11(1):18–24
- 105.
Lee DE, Ayoub N, Agrawal DK (2016) Mesenchymal stem cells and cutaneous wound healing: novel methods to increase cell delivery and therapeutic efficacy. [Research Support, N.I.H., Extramural Review]. Stem Cell Res Ther 7:37. https://doi.org/10.1186/s13287-016-0303-6
- 106.
Li Z, Fang ZY, Xiong L, Huang XL (2010) Spinal cord injury-induced astrocyte migration and glial scar formation: effects of magnetic stimulation frequency. [Research Support, Non-U.S. Gov't]. Indian J Biochem Biophys 47(6):359–363
- 107.
Ishii T, Ueyama T, Shigyo M, Kohta M, Kondoh T, Kuboyama T et al (2017) A novel Rac1-GSPT1 signaling pathway controls astrogliosis following central nervous system injury. J Biol Chem 292(4):1240–1250. https://doi.org/10.1074/jbc.M116.748871
- 108.
Zeng Z, Leng T, Feng X, Sun H, Inoue K, Zhu L, Xiong ZG (2015) Silencing TRPM7 in mouse cortical astrocytes impairs cell proliferation and migration via ERK and JNK signaling pathways. [Research support, N.I.H., extramural Research Support, Non-U.S. Gov't]. PLoS One 10(3):e0119912. https://doi.org/10.1371/journal.pone.0119912
- 109.
Raftopoulou M, Hall A (2004) Cell migration: Rho GTPases lead the way. Dev Biol 265(1):23–32
- 110.
Huang XQ, Zhang XY, Wang XR, Yu SY, Fang SH, Lu YB et al (2012) Transforming growth factor beta1-induced astrocyte migration is mediated in part by activating 5-lipoxygenase and cysteinyl leukotriene receptor 1. J Neuroinflammation 9:145. https://doi.org/10.1186/1742-2094-9-145
- 111.
Farhan H, Hsu VW (2016) Cdc42 and cellular polarity: emerging roles at the golgi. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Trends Cell Biol 26(4):241–248. https://doi.org/10.1016/j.tcb.2015.11.003
- 112.
Rutkowska A, Preuss I, Gessier F, Sailer AW, Dev KK (2015) EBI2 regulates intracellular signaling and migration in human astrocyte. [Research Support, Non-U.S. Gov't]. Glia 63(2):341–351. https://doi.org/10.1002/glia.22757
- 113.
Dixon KJ (2017) Pathophysiology of traumatic brain injury. [Review]. Phys Med Rehabil Clin N Am 28(2):215–225. https://doi.org/10.1016/j.pmr.2016.12.001
- 114.
Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. [Review]. Br J Anaesth 99(1):4–9. https://doi.org/10.1093/bja/aem131
- 115.
Fernandez-Fernandez S, Almeida A, Bolanos JP (2012) Antioxidant and bioenergetic coupling between neurons and astrocytes. [Research Support, Non-U.S. Gov't Review]. Biochem J 443(1):3–11. https://doi.org/10.1042/BJ20111943
- 116.
Kim WS, Park BS, Kim HK, Park JS, Kim KJ, Choi JS et al (2008) Evidence supporting antioxidant action of adipose-derived stem cells: protection of human dermal fibroblasts from oxidative stress. [Research Support, Non-U.S. Gov't]. J Dermatol Sci 49(2):133–142. https://doi.org/10.1016/j.jdermsci.2007.08.004
- 117.
Yalvac ME, Yarat A, Mercan D, Rizvanov AA, Palotas A, Sahin F (2013) Characterization of the secretome of human tooth germ stem cells (hTGSCs) reveals neuro-protection by fine-tuning micro-environment. [Research Support, Non-U.S. Gov't]. Brain Behav Immun 32:122–130. https://doi.org/10.1016/j.bbi.2013.03.007
Acknowledgements
The authors thank Dr. Camilo Prieto and the staff of the cosmetic surgery in Bogota, Colombia, for the adipose tissue samples. This work was supported by PUJ ID 6260 to GEB and scholarship for doctoral studies awarded by the Vicerrectoría Académica of PUJ to Baez-Jurado E.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Baez-Jurado, E., Hidalgo-Lanussa, O., Guio-Vega, G. et al. Conditioned Medium of Human Adipose Mesenchymal Stem Cells Increases Wound Closure and Protects Human Astrocytes Following Scratch Assay In Vitro. Mol Neurobiol 55, 5377–5392 (2018). https://doi.org/10.1007/s12035-017-0771-4
Received:
Accepted:
Published:
Issue Date:
Keywords
- Human astrocytes
- Brain injury
- Conditioned medium
- Mesenchymal stem cells
- Migration
- Scratch