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Abstract—Mathematical models for transmission dynamics of the novel COVID-2019 coronavirus, an
outbreak of which began in December, 2019, in Wuhan are considered. To control the epidemiological
situation, it is necessary to develop corresponding mathematical models. Mathematical models of
COVID-2019 spread described by systems of nonlinear ordinary differential equations (ODEs) are
overviewed. Some of the coefficients and initial data for the ODE systems are unknown or their aver-
aged values are specified. The problem of identifying model parameters is reduced to the minimization
of a quadratic objective functional. Since the ODEs are nonlinear, the solution of the inverse epide-
miology problems can be nonunique, so approaches for analyzing the identifiability of inverse prob-
lems are described. These approaches make it possible to establish which of the unknown parameters
(or their combinations) can be uniquely and stably recovered from available additional information.
For the minimization problem, methods are presented based on a combination of global techniques
(covering methods, nature-like algorithms, multilevel gradient methods) and local techniques (gradi-
ent methods and the Nelder–Mead method).
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1. INTRODUCTION
In December, 2019, a pneumonia outbreak was reported in Wuhan, China, during which COVID-2019

virus was identified for the first time by analyzing nucleic acid in a patient with pneumonia. According to
data from the Chinese Center for Disease Control and Prevention, the reproduction number is estimated
as lying between 2 and 3, which corresponds to the number of new infections from a single infection; so
long as it is greater than 1, the epidemic will grow (see Figs. 1, 2).

A possible source of COVID-2019 virus is bats, since RNA from COVID-2019 samples was found to
coincide up to 96% with virus RNA, which was earlier found in Rhinolophus affinis [1]. Virus replication
occurs mainly in the lower respiratory tract, causing cytokine overproduction and an immune response in
the organism that reduces the number of Т-lymphocytes in the blood, which are responsible for the pro-
tective functions of the organism [2]. As of February 11, 2020, the number of confirmed infected cases was
43143 people, of which 1018 were deaths and 4347 were recovered people [3]. Genetically, COVID-2019
is 80% identical to severe acute respiratory syndrome (SARS), an outbreak of which was observed in
China in 2003 and resulted in more than 5000 infected individuals [4] (see Table 1). However, the rate of
spread of COVID-2019 is much higher than that of SARS, since, starting at January 24, the number of
recorded cases in Wuhan grew from 549 to 31728 people over 17 days (see Fig. 2).

An additional key epidemiological parameter is the incubation period, which is estimated to be 3–
7 days according to WHO data. An optimal incubation period of 5.2 days was obtained in [5, 6].

On January 30, the World Health Organization declared the COVID-2019 disease outbreak a public
health emergency of international concern [7].

In the context of the current situation, it is necessary to predict the epidemic evolution in China and
the world. An approach to the prediction of COVID-2019 spread is the mathematical modeling of infec-
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Fig. 1. Number of COVID-2019 infected (blue), recovered (orange), and died (green) individuals from January 22, 2020
to February 11, 2020 over the territory of China. 
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Fig. 2. Recorded cases of COVID-2019 detected on January 24, 2020 (left) and February 10, 2020 (right) in the territory
of China [3, 7].
tion transmission in a population with a given infection source, transition rates between groups of people
with similar characteristics (symptoms, quarantine, antibodies, strains), death rate, latent period, degree
of isolation (population migration between provinces, ban on product import), and statistical data on
infected and recovered individuals at fixed times. A mathematical model based on the mass balance law
and described by a system of nonlinear ordinary differential equations (ODEs) most accurately describes
the spread of infectious diseases in populations divided into groups of individuals with similar character-
istics (for example, susceptible, infected, treated, recovered, etc.). Most of the coefficients and initial con-
ditions for the ODEs are not known or can be estimated with a large error. For example, the number of
recorder COVID-2019 cases was predicted in [8] based on data for the period of up to January 23, 2020.
The predicted number on February 10, 2020, was 75000 people, although the actual number was
40 645 individuals. Such errors in the predicted evolution of an infectious disease leads to huge costs asso-
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Table 1. Statistical data on spread of SARS (as of July 31, 2003) [4] and COVID-2019 (as February 10, 2020) coro-
naviruses [7]

Virus Infected (individ.) Recovered (individ.)
Died

(individ.)

Incubation period 

(days)

SARS 5327 — 349 0

COVID-2019 43143 4347 1018 5.2
ciated with control measures and result in incorrect conclusions. To identify unknown parameters of
mathematical models described by ODE systems, it is necessary to use additional information on the
number of infected and recovered individuals on every day. The approach used in this work is classical for
inverse problems [9]. In the next sections, we describe existing mathematical models of COVID-2019
spread, present methods for solving the arising inverse problems, and give examples of their solutions.

This paper is organized as follows. In Section 2, we present mathematical models of COVID-2019
spread and formulate inverse problems. The identifiability of a mathematical model is described in Sec-
tion 3. A classification of optimization methods for solving inverse problems and the domain of their
application are addressed in Section 4.

2. MATHEMATICAL MODELS OF COVID-2019 SPREAD

Mathematical epidemiology models based on a compartmental structure are described by systems of
nonlinear ODEs

(1)

and characterize an isolated spread of infection within a region. An outbreak of a novel infection leads to
the development of new mathematical epidemiology models, taking into account its features. One of the
first models of a tuberculosis epidemic was constructed in [10] based on mathematical models in meteo-
rology, demography, economy, and epidemiology of acute diseases. It captures the main difference of a
tuberculosis epidemic from epidemic processes of acute diseases, namely, the presence of a long latent
period. Later, Waaler’s model was developed by Soviet mathematicians Marchuk and his followers
[11, 12]. Specifically, a mathematical model of pneumonia transmission was widely used [13].

A mathematical model of COVID-2019 transmission from a supposed source of infection (bats) to
humans was developed in [1]. Since the infection source has not been traced thus far, the authors adapted
a mathematical model of virus transmission from a seafood market to humans. The model is schematically
shown in Fig. 3. It consists of 14 ODEs of type (1) and involves 25 coefficients ϕ characterizing the tran-
sition rates between 14 groups. The groups are identified according to the well-known SEIR model, which
describes the dynamics of an infection between susceptible, exposed, infected, and recovered individuals.
The problem of identifying unknown coefficients based on available statistical data concerning the num-
ber of infected and recovered individuals at fixed days is ill posed, i.e., its solution is neither unique nor
stable [14, 15]. To use such a model for predictions, it is necessary to obtain more statistical data.

A more detailed mathematical model of a metapopulation is based on a global network of local popu-
lation groups connected by edges representing passenger traffic between cities [16]. At each node of the
network, the outbreak dynamics is locally modeled using a discrete-time compartmental SEIR model
similar in structure to the mathematical model of a tuberculosis epidemic of 1962 [10]. The SEIR param-
eters are estimated based on a five-day incubation period. It is assumed that initial COVID-2019 cases are
present only in Wuhan, and border control is not taken into account.

In [17] a deterministic SEIR compartmental model for the dynamics of the novel coronavirus was pro-
posed to estimate the influence exerted by public health care control on the infection (see Fig. 4). Accord-
ing to the model, the outbreak had to reach its maximum on February 7, 2020, with a considerable low
peak value. The proposed epidemiology SEIR model is based on eight ODEs with 12 coefficients ϕ, and
parameter values are chosen using the method of interval generation [18]. Note that the prediction was
obtained with an error, since the peak value within growth was not reached on February 12, 2020, which
requires the development of more accurate methods for parameter identification for ODE systems.

A new time-delay mathematical model for the COVID-2019 outbreak in China was proposed in [19].
The model consists of four integro-differential equations with three unknown coefficients determined by
a local gradient method using additional information on the number of infected and recovered individuals

( ) ( )= ϕ = ∈�
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Fig. 3. Block diagram of the mathematical source–market–people model [1].
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Fig. 4. Diagram of the mathematical model of COVID-2019 spread [17].
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over two weeks. Since the solution of the identification problem is not unique, the reliability of the numer-
ical results is not guaranteed because of the use of local iterative methods [20, 21].

The same approach to the construction of compartmental mathematical models based on systems of
nonlinear ODEs was used for other close acute infections, such the SARS outbreak of 2003 in China [22–24],
Middle Eastern respiratory syndrome (MERS) in Saudi Arabia and South Korea [25], tuberculosis and
HIV in Russia and Kazakhstan [26–28], etc. Despite the genome similarity of COVID-2019 to the SARS
and MERS coronavirus, the course of the disease, including the incubation period, differs strongly, which
prevents the application of previously developed models to the novel COVID-2019 coronavirus. The pres-
ence of a latent period in COVID-2019 is similar to mathematical models of tuberculosis dynamics, which
we used to obtain a prediction verified by statistical data [26–28].

2.1. Formulation of the Inverse Problem
In view of the measures taken in China to control the epidemic, including quarantine and isolation,

the population in a chosen province is divided into susceptible (S), exposed (E), asymptomatic infected (A),
symptomatic infected (I), hospitalized (H), and recovered (R) individuals. Additionally, groups under
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 60  No. 11  2020
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Table 2. Description of parameters, their approximate values, and initial data for the mathematical model (2), (3)
of COVID-2019 spread in China [17]

Parameter Description Mean value

Contact rate 14.781

Probability of infection transmission to individual

Infection rate in individuals under quarantine

Rate of transition of infected individuals to infected class 1/7

Rate at which quarantined uninfected contacts are released into community 1/14

Probability of symptoms among infected individuals 0.86834

Rate of transition of symptomatic infected individuals to quarantined 

infected class

0.13266

Rate of transition of quarantined individuals to quarantined infected class 0.1259

Recovery rate of symptomatic infected individuals 0.33029

Recovery rate of asymptomatic infected individuals 0.13978

Recovery rate of quarantined infected individuals 0.11624

Death rate from disease

Initial values Description Mean values

Initial susceptible population in Wuhan 11081000

Initially exposed population 105.1

Initial symptomatic infected population 27.679

Initial asymptomatic infected population 53.839

Initial susceptible population under quarantine 739

Initially quarantined exposed population 1.1642

Initially infected population under quarantine 1

Initially recovered individuals 2

c
β −× 8

2.1011 10

q −× 7
1.8887 10

σ
λ
ρ
δI

δq

γI

γA

γH

α −× 5
1.7826 10

0S

0E

0I

0A

0qS

0qE

0H

0R
quarantine are distinguished, namely, susceptible (Sq) and exposed (Eq) [17]. The diagram of the compart-

mental mathematical model is shown in Fig. 4. Taking into account the mass balance law, the mathemat-
ical model for ODE system (1) is written as

(2)

with initial data

(3)

The parameters of mathematical model (2) and initial data (3) in the case of Wuhan on January 10, 2020,
are described in Table 2.

The mathematical model (2), (3) involves 14 unknown parameters 

 To identify them, we formulate the inverse problem of determining the
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parameter vector p from available additional measurements of the number of susceptible individuals at
fixed days tk:

(4)

In the vector form of (1),  and . Data (4) are written as

where  and .

In operator form, the inverse problem (2)–(4) is written as

where ;  and F are the Hilbert spaces of feasible parameters and measurements,

respectively;  is the vector of data; and .

In the general case, inverse problem (2)–(4) is ill posed, i.e., its solution may be nonunique or unstable

(the Fréchet derivative  of the operator of the inverse problem has no inverse). Based on available

data (4), the identifiability analysis performed in Section 3 yields a set of identifiable parameters, which
are subsequently determined [14, 15, 29].

Inverse problem (2)–(4) is reduced to the minimization of the objective functional

, which, in our case, has the form

and characterizes the standard deviation of the model results from statistical data. Finally, the inverse
problem (2)–(4) is written as

(5)

A classification of methods for solving of problem (5) is given in Section 4.

3. IDENTIFIABILITY OF THE MATHEMATICAL MODEL

In certain cases, the solution of the inverse problem (2)–(4) may be nonunique or unstable with respect
to the errors in measurements (4). To determine a unique set of parameters (or their combinations) and
the degree of sensitivity of the unknown parameters to errors in the data of the inverse problem, the iden-
tifiability of mathematical models for ODE systems was analyzed [14, 30, 31]. Formally, the following
three types of identifiability can be distinguished (see the diagram in Fig. 5).

1. A priori (structural) identifiability is used to study the structure of a model in the case of continuous
data. The methods of structural identifiability include ones of an additional function, differential algebra,
series expansions, graph theory, and others [14, 30]. For example, the graph theory method not only
determines the identifiability of a model, but also allows one to find a special change of variables that
brings the original model to an identifiable form.

2. Practical (a posteriori) identifiability makes it possible to reveal identifiable parameters with respect
to noisy data by applying Monte Carlo techniques, the correlation matrix method, and others [14, 29].

3. Sensitivity analysis yields a sequence of parameters sensitive to measurement errors and estimates
the degree of this sensitivity [14, 29].

To study the identifiability of the inverse problem (2)–(4), we used the DAISY code [31]. An anal-
ysis showed that the problem of identifying 14 parameters  from measurements (4) has a nonunique
solution, i.e., the model is locally unidentifiable. When the parameter vector is reduced to

, the mathematical model (2)–(4) becomes locally identifiable.

4. OPTIMIZATION METHODS

Formally, optimization methods can be divided into global, local, and combined ones. The first group
consists of nature-like algorithms, including genetic algorithms, simulated annealing, particle swarm
optimization, differential evolution, etc., as well as covering methods, for example, Evtushenko’s method
of nonuniform coverings [32–34] and tensor decomposition. Global optimization methods localize the
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Fig. 5. Classification of identifiability methods [14]. 
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domain of an extremum and they are effective in spaces of high dimension. Local optimization methods

are subdivided into two groups: order-zero methods, which use only the value of the functional (the

Nelder–Mead and Hooke–Jeeves methods) and gradient methods (Gauss–Newton, Levenberg–Mar-

quardt, etc.). A feature of local methods is high efficiency and convergence to a local extremum for gra-

dient methods. The main disadvantage of local methods is the convergence to a local minimum, espe-

cially, in spaces of high dimension. Combined methods are based on the following idea: global optimiza-

tion methods determine the domain of a global extremum, in which local methods start to refine the

extremum value [26]. The formal classification of optimization methods is shown as a diagram in Fig. 6.
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In what follows, we outline the basic methods of three groups: global stochastic methods (Subsection 4.1),
covering methods (Subsection 4.2), and local gradient-type methods (Subsection 4.3).

4.1. Global Stochastic Methods
The global stochastic methods include nature-like algorithms modeling natural selection processes

(genetic algorithm [28, 35], the method of differential evolution, genetic programming, etc.), as well as
algorithms imitating instinctive behavior in nature (particle swarm optimization, the ant algorithm) and
processes in physics (simulated annealing [26]). A feature of algorithms of this type is that they solve a
simpler problem based on laws of nature and do not take into account the features of the functional to
which they are applied. Such algorithms can be naturally extended to parallel architectures. Although
these methods are global, i.e., they determine the domain of a global extremum, there are no theoretical
estimates for their convergence (only stochastic ones are available). Moreover, the tuning of parameters
of nature-like algorithms to ensure statistical convergence is a complicated problem, which is sometimes
more complicated than the optimization problem.

4.2. Tensor Decomposition
Covering methods need a priori information about the functional whose extremum is to be found. For

example, the basic idea of nonuniform covering method [32] is that the solution space Q is partitioned into
subsets covering Q. On each subset, the objective function has certain properties (for example, Lipschitz
continuity, convexity, existence of a second derivative, etc.) which are used in solving optimization prob-
lems, thus improving the convergence rate.

Tensor decomposition (TD) is a global optimization method that is directly applied to parameter max-
imization problems [37]. It is based on the properties of the TD [37, 38]

(6)

and on the method of TD-cross approximation of the tensor  [39], which constructs an approximation

based on the largest elements. Here, Gi are called the TD kernels of the tensor  and are matrices of size

  

For a large space of admissible parameters, the TD-based optimization method yields optimal param-
eters. Additionally, some of the computations can be executed in parallel, which makes the method a
direct alternative to nature-like algorithms.

4.2.1. TD algorithm for optimization problem. Minimization problem (5) can be reduced to the maxi-

mization of the function . We specify the set of feasible values that can be taken by

, i.e., by the components of the vector , and represent them on a grid, dividing

each of the intervals  by  nodes.

Let  be an arbitrary value taken by the parameter . Considering  for all feasible combinations ,
taking into account the discrete form of the obtained response, and the representability of the multivari-
able functional in the form of a tensor, we obtain

The original problem is reduced to finding the largest component of the tensor . Eventually, we obtain
the solution of the global minimization problem in the projection onto the grid, and the result can be
improved by applying local minimization.

4.3. Gradient-Type Methods
Gradient-type methods as applied to minimization problem (5) consist in successive approximation of

the solution p according to the iterative process

Here,  is the descent parameter, the choice of which is determined by the type of the gradient method
(steepest descent method, Landweber iteration, minimum errors, conjugate gradients, etc.) and

 is the gradient of the objective functional . The convergence of gradi-
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Fig. 7. Number of susceptibles SB (turquoise) under treatment without T (yellow) and with Tm (red) drug-resistant strains

in the Sverdlovsk region of the Russian Federation for data over 2010–2013 with a prediction for 2014–2019 as obtained
after parameter identification by simulated annealing combined with gradient descent (thin) and by tensor decomposition
combined with gradient descent (thick) in thousand people. Circles denote the statistical data used to solve the parameter

identification problem (red) and to verify the algorithms (color of the modelled quantity).
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ent methods to a normal pseudosolution and convergence acceleration techniques were addressed in

[20, 40–43] (see also references therein). The following expression for the objective functional gradient 

was obtained in [44]:

where  is the solution of the adjoint problem

Here,  are the corresponding Jacobian matrices and  is the jump in the function  at the

point tk.

5. CONCLUSIONS

Mathematical models for transmission dynamics of COVID-2019, an epidemic of which broke out in
Wuhan in December 2019 were presented. The models are described by systems of nonlinear ordinary dif-
ferential equations, whose coefficients and initial data are unknown or their averaged values are specified.
A mathematical model of COVID-2019 spread under quarantine consisting of eight nonlinear ODEs with
10 unknown coefficients and four initial conditions was considered. The identifiability of the model was
analyzed using additional measurements of susceptible individuals infected under quarantine and recov-
ered at fixed times. This inverse problem is a priori not identifiable, i.e., its solution is nonunique, but
becomes identifiable when some varying parameters of the model are fixed. The problem of identifying
model parameters is reduced to the minimization of a quadratic objective functional of the residual.
Methods for solving the minimization problem are given based on a combination of global techniques
(covering methods, nature-like algorithms, multilevel gradient methods) and local techniques (order-zero
methods, gradient methods).

The model under study is similar to the mathematical model for tuberculosis transmission with control
programs [26] and for coinfections of tuberculosis and HIV [29]. The combined approaches for functional
optimization were found effective as applied to problems of this type. Namely, global optimization meth-
ods determine the domain of the global extremum, while local optimization methods refine solutions of
the inverse problem, “starting” in the global extremum domain. Specification of parameters in models of
tuberculosis transmission in Russian Federation regions allowed us to simulate the situation for several
years ahead and to compare the prediction with statistical data (see Fig. 7).
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