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Abstract
Background The mitochondrial cofactors α-lipoic acid (ALA), coenzyme Q10 (CoQ10) and carnitine (CARN) play distinct 
and complementary roles in mitochondrial functioning, along with strong antioxidant actions. Also termed mitochondrial 
nutrients (MNs), these cofactors have demonstrated specific protective actions in a number of chronic disorders, as assessed 
in a well-established body of literature.
Methods Using PubMed, the authors searched for articles containing information on the utilization of MNs in inflammatory 
disorders as assessed from in vitro and animal studies, and in clinical trials, in terms of exerting anti-inflammatory actions.
Results The retrieved literature provided evidence relating acute pathologic conditions, such as sepsis and pneumonia, with 
a number of redox endpoints of biological and clinical relevance. Among these findings, both ALA and CARN were effec-
tive in counteracting inflammation-associated redox biomarkers, while CoQ10 showed decreased levels in proinflammatory 
conditions. MN-associated antioxidant actions were applied in a number of acute disorders, mostly using one MN. The body 
of literature assessing the safety and the complementary roles of MNs taken together suggests an adjuvant role of MN com-
binations in counteracting oxidative stress in sepsis and other acute disorders, including COVID-19-associated pneumonia.
Conclusions The present state of art in the use of individual MNs in acute disorders suggests planning adjuvant therapy 
trials utilizing MN combinations aimed at counteracting proinflammatory conditions, as in the case of pneumonia and the 
COVID-19 pandemic.
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Introduction

Acute pathological conditions display well-established links 
with oxidative stress (OS), through a number of different or 
complementary mechanistic features, as early studies have 
reported [1–4]. Fighting acute diseases has long been a tar-
get in medicine and over time has come to encompass a 
range of pharmacological and immunological tools, includ-
ing the use of adjuvant means for mitigating the inflamma-
tory conditions in relevant therapeutical strategies [5–8].

A major contemporary case of inflammatory pneumo-
nia is presented by the global COVID-19 (SARS-CoV2) 
outbreak. Clinical presentations in COVID-19 include, but 
are not limited to, cough, fever, and acute respiratory dis-
tress sydrome, which can lead to serious complications for 
those with underlying cardiovascular disease, diabetes mel-
litus, chronic pulmonary disorders, renal disease and other 
co-morbidities [9, 10]. COVID-19 causes neutrophilia, 
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lymphopenia, leukopenia, thrombopenia, and anemia as 
well as increased expression of systemic inflammatory pro-
teins IL-6, C-reactive protein (CRP), innate chemokines 
(CXCL10, CCL2, CCL3) and the proinflammatory cytokine 
TNF-α [11–13]. A relevant involvement of mitochondrial 
dysfunction (MDF) in COVID-19 pathogenesis was recently 
reported by [14–16].

On a molecular level, the virus has several binding cent-
ers, including a transmembrane receptor for angiotensin-
converting enzyme 2 (ACE-2) that facilitates viral entry into 
cells. The expression level of ACE-2 is increased with age 
[17, 18] and ACE-2 accumulates on alveolar, ciliated and 
goblet cells in the airways, the intestinal epithelium, car-
diac cells and vascular endothelia [19, 20]. COVID-19 also 
exhibits genomic regions encoding the viral spike protein 
[21] which may attach to immunoglobulin CD147 on the 
surface of erythrocytes and some lymphocytes to attack the 
1b-chain of hemoglobin, causing inhibition of heme metabo-
lism [22–24]. This results in a strong OS and uncontrolled 
release of proinflammatory cytokines which has been termed 
“cytokine storm” [25].

Sepsis, on the other hand, is a pathogenesis caused by 
bacterial, viral, fungal, or protozoan infection, and also 
results in an inflammatory response and poor delivery of 
oxygen to tissues [26]. The most common consequences are 
impaired vascular permeability, cardiac malfunction, and 
MDF leading to impaired respiration [27]. As in COVID-
19, the course of sepsis is often accompanied by a cytokine 
storm, leading to OS [14]. An important target of altered 
inflammation in the COVID-19 pathology has been shown 
to be also the endothelium with recent evidences indicating 
that the clinical condition produced by COVID-19 infection 
is not primarily a respiratory pathology, but rather a coagula-
tive disorder [23, 28]. The endothelium plays a major role 
in the regulation of coagulative processes; thus, OS may 
disturb endothelial function, promoting the inactivation of 
beneficial endothelial-derived nitric oxide.

The relationship between OS and the risk of death in 
patients infected with COVID-19 suggests the need for 
alternative approaches to counteract this infection [28]. In 
addition, a recent report on the possible participation of 
COVID-19 in weakening mitochondrial functions suggests 
the need to consider these organelles as an object for adju-
vant therapeutic effects targetting [16, 17, 29, 30].

In view of contributing to the mitigation of prooxidant 
state in COVID-19, the use of several antioxidants has been 
proposed, as in the case of melatonin [31], vitamin C [32], 
vitamin D [33], vitamin B12 and nicotinamide [34], res-
veratrol [35], and herbal preparations [36–38]. The rationale 
of these adjuvant strategies has been recenty reviewed by 
Quiles et al. [39].

This concurs with antioxidant therapy against sepsis that 
also suggests focuses on improving mitochondrial functions 

[40]. A range of studies has assessed the adjuvant role of 
three mitochondrial cofactors in mitigating a prooxidant 
state, with background data deriving from experimental and 
clinical studies.

MDF and energy deficiency during sepsis 
and COVID‑19

Many researchers have postulated that systemic inflam-
mation, accompanied by elevated levels of TNF-α, IL-1 
and PDGF, was the main determinant of the pathogenesis 
of sepsis and septic shock [41]. The relationship between 
increased production of nitric oxide, antioxidant depletion 
and a decrease in the activity of complex I of the respiratory 
chain in patients with sepsis has been well demonstrated [42, 
43]. Persistent inflammation during sepsis can be caused by 
overproduction of mitochondrial ROS (mtROS) with conse-
quent mitochondrial damage and MDF. Since the main role 
of mitochondria is to supply cells with energy, the above 
consequences should lead to a decrease in the synthesis of 
ATP. Indeed, decreased levels of ATP in the liver [44], kid-
ney [45] and blood [46] were associated with the severity 
of sepsis [46, 47]. Although data on ATP levels and mito-
chondrial function are still emerging in COVID-19 patients, 
there are many reasons for drawing parallels with sepsis. 
In particular, the most recent work by Gibellini et al. [48] 
shows a decrease in ATP and MDF levels in patients infected 
with SARS-CoV-2. This means that mitochondria may be 
dysfunctional and unable to cope with the hypermetabolic 
demands associated with COVID-19 sepsis. Excessive 
ROS levels have also been seen in critically ill patients with 
COVID-19, indicating MDF’s involvement in the disease 
[49, 50]. In general, approaches targeting mtROS should 
be incorporated into preventive and therapeutic strategies 
against sepsis [7] and COVID-19-associated sepsis [51]. 
One such approach may be metabolic resuscitation with 
MNs, which can prevent uncontrolled production of mtROS 
and help maintain tissue homeostasis during these diseases.

Mitochondrial nutrients: action mechanisms 
and antioxidant properties

Over the past several decades, a body of literature has estab-
lished distinct, yet complementary, roles of MNs in mito-
chondrial functions [52, 53]. Comprehensive recent reviews 
have been focused on the roles and on the prospective poten-
tial clinical utilization application of α-lipoic acid (ALA) 
[54–56], coenzyme Q10 (CoQ10) [8, 57–60] and carnitine 
(CARN) [61, 62]. We have reported previously on the com-
bined features of MDF, prooxidant state and prospective 
use of MNs in an extensive number of chronic, age-related 
or genetic disorders [6, 63–67]. Unlike chronic disorders, a 
relatively lesser body of literature has been focused on acute 
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disorders, in spite of their—quite obvious—association with 
a prooxidant state as in, for example, sepsis.

The relative roles of each MN in counteracting acute 
prooxidant conditions are reported in the following tables, 
with data deriving from in vitro and animal studies and from 
clinical trials.

As shown in Table 1, in vitro studies have shown the 
relevance of each MN in a number of prooxidant-related 
conditions. Murine, rat and human cell lines, characterized 
by prooxidant state endpoints, were tested for antioxidant 
effects of ALA, which was found to inhibit signal-regulated 
kinase-1 (ERK1), prooxidant interleukins and other OS bio-
markers [68–73]. An analogous antioxidant action was found 
by Schmelzer et al. [74] by testing CoQ10 in murine cells, 
which exerted anti-inflammatory properties via NFκB1-
dependent gene expression. Further studies on models of 
inflammation included human endothelial cells at different 
levels of replicative senescence which were challenged with 
LPS. In this context, the reduced form of CoQ10 was par-
ticularly effective in preventing the modulation of inflam-
matory markers that characterize the senescence-associated 
inflammatory phenotype [75]. Further, CARN, when tested 
in rat renal cells or cardiomyocytes, was found to enhance 
SOD2 expression and to counteract OS and inflammation 
[76, 77]. Taken together, these studies of the in vitro MN-
associated antioxidant effects provide a body of evidence 
suggesting a protective antioxidant action of MNs at the 
organismal level.

Testing of the effects of MNs in animal models of acute 
inflammation conditions is summarized in Table 2. A num-
ber of studies in the recent decade have tested the ALA-asso-
ciated anti-inflammatory effects on rats [78–86] and mice 
[87, 88]. The model disorders included multiple-organ sepsis 
[78, 81, 82, 86], endotoxemia [79], metal or organic poison-
ing [81, 84], and radiation-induced damage [88]. Altogether, 

ALA administration was found to decrease inflammatory 
response,  H2O2, MDA levels, myeloperoxidase activity, and 
cytokine levels. Thus, the body of evidence for ALA-associ-
ated anti-inflammatory actions provides strong suggestions 
toward the adjuvant use of this MN in counteracting inflam-
matory conditions.

CoQ10 was also tested in rat and mouse models (Table 2), 
for its ability to counteract inflammatory conditions as drug-
induced [89], or in puncture-induced sepsis [90], or experi-
mental cerebral malaria [91].

Overall, CoQ10 was found to decrease MDA, TBARS 
and 8-OH-dG. Though through a more limited body of 
evidence compared to ALA, also CoQ10-associated anti-
inflammatory properties may suggest the grounds for the 
design of adjuvant clinical treatments in acute disorders.

The animal studies of CARN- or acetyl-CARN-induced 
protection against proinflammatory conditions were focused 
on the same set of test-induced noxae (steatohepatitis, peri-
tonitis, neuroinflammation) [92–95], as shown in Table 2. 
The results showed that (acetyl-)CARN decreased the levels 
of several proinflammatory endpoints, including proinflam-
matory markers, NF-ĸB and IL-1 and IL-6, and ameliorated 
organ inflammation [96, 97].

Thus, from the evidence provided in animal studies, each 
MN provides multiple means of protection against a number 
of proinflammatory conditions.

The reports from clinical trials on MNs in acute disorders 
are relatively few compared to the wealth of literature assess-
ing the positive effects of MNs in several chronic diseases, 
such as type 2 diabetes and aging-related or cardiovascular 
disorders. An example of this growing body of literature on 
clinical trials in a number of chronic disorders may be found 
in our review [6], which cites a total of 262 reports on clini-
cal trials testing MN-associated protective effects in patients 
affected by an extensive number of chronic disorders. As 

Table 1  Reports on in vitro effects of mitochondrial nutrients [MN: ALA, CoQ10 and (acyl-)CARN] focused on anti-inflammatory end points

MN Test model Effects References

ALA C2C12 myotubes Regulating IL-6R and gp130 expression [53]
SK-N-BE neuroblastoma cells Repression of IL-1b and IL-6 dependent on DNA methylation [54]
Murine RAW 264.7 cells Inhibited ERK, p38 and NFκB [55]
Murine RAW 264.7 cells Inhibited signal-regulated kinase-1 (ERK1) and peroxisome proliferator-activated 

receptor gamma (PPARγ)
[56]

Rat embryonic fibroblasts Decreased β-galactosidase, oxidative stress biomarkers, and number of apoptotic 
cells via the caspase-dependent pathway

[57]

Human glioblastoma cells Decreased apoptotic, inflammatory and oxidant effects of TRPA1 activation [58]
CoQ10 Murine RAW 264.7 cells Anti-inflammatory properties via NFκB1-dependent gene expression [59]

Human dermal fibroblasts human 
umbilical vein endothelial cells 
(HUVECs)

CoQ10-induced improvement of oxidative status via miR-146a modulation [60]

CARN Rat renal cells (NRK-52E) Leptin-induced oxidative stress and inflammation were reversed by CARN [61]
H9c2 rat cardiomyocytes Promotes STAT3 activation and increases the expression of SOD2 [62]
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shown in Table 3, ALA was administered to patients admit-
ted for hemodialysis [98], or undergoing cardiopulmonary 
surgery [99], or affected by ischemia—reperfusion injury 
[100]. Following ALA administration, patients underwent 
decrease in inflammatory markers, C-reactive protein (CRP), 
and IL-6 and IL-8 levels.

CoQ10 levels were significantly lower in patients with 
acute influenza infection [101, 102]. CoQ10-supplemented 
patients showed decreased levels of inflammatory markers 
such as IL‐2 and TNF‐α, although no correlation with IL‐6 
and IL‐10 was found [102]. Patients affected by papilloma-
virus skin warts and administered with CoQ10 underwent 
decreased viral load and increased antiviral cytokine levels 
[103] (Table 3).

CoQ10 was shown to improve clinical parameters as well 
as MDF in septic patients who received 100 mg CoQ10 twice 
a day for 7 days. In a randomized trial (n = 40), decreased 
levels of TNF-α and malondialdehyde were obtained in the 
early phase of septic shock patients [104].

Concurrent reports on CARN administration to patients 
undergoing hemodialysis [105–107], or septic shock [108] 
or affected by coronary artery disease [109], or periopera-
tive atrial fibrillation [110] found CARN-induced significant 
decrease in CRP or decreased mortality, as shown in Table 3. 
The relevance of CRP in inflammation and OS had been 
established in early studies [111], thus the adjuvant role of 
CARN in mitigating a number of proinflammatory condi-
tions should be ascertained.

Mitochondrial nutrients: safety, and their combined 
administration in counteracting proinflammatory 
conditions

Safety

α‑Lipoic acid α-Lipoic acid is a physiological compound 
produced in the mitochondria as a part of their basic metab-
olism (Krebs cycle). Degradation of ALA is similar in 
humans and in rats [112], and the safety of ALA has been 

Table 2  Reports on the effects of mitochondrial nutrients (MN) on anti-inflammatory endpoints tested in animal studies

MN Species (strain) Effects References

ALA Rats Decreased kidney injury in a model of sepsis [63]
Wistar rats Attenuated inflammatory response and improved multiple organ dysfunction syndrome 

caused by endotoxemia
[64]

Rats Decreased  H2O2, MDA levels, and myeloperoxidase activity in ulcerative colitis [65]
Wistar rats Reduced inflammation and oxidative stress in liver and kidney after sepsis [66]
Wistar–Kyoto rats Counteracting counteracting gold nanoparticle-induced oxidative stress [67]
Sprague–Dawley rats Decreased renal and gut injury, levels of IL-1β, TNF-α, and NO synthase [68]
Wistar rats Decreased oxidative stress and the level of C-reactive protein and increased antioxidant 

potential in Cd-induced oxidative stress
[69]

Ovariectomized rats Prevented GSH and total non-enzymatic antioxidants depletion, and restored GPx and GR 
activities, TNF-α, and IL-6 in ovariectomized rats

[70]

Rats Decreased cytokine levels in acute respiratory distress syndrome [71]
Mice Mitigated infiltration of most inflammatory cells, inflammation and vascular damage in 

radiation-induced pneumonitis
[72]

C57BL/6 Mice Decreased lipopolysaccharide-induced acute inflammatory response [73]
CoQ10 Lewis rats Decreased TBARS and IL-1 in methotrexate-induced rheumatoid arthritis [74]

Wistar rats Protective effects on multiple organ damage and histopathologically following cecal ligation 
and puncture-induced sepsis

[75]

C57BL/6J mice Decreased NFκB phosphorylation; abrogated MDA and 8-OHDG, and restored cellular 
glutathione in experimental cerebral malaria

[76]

CARN STAM mice Prevented progression of non-alcoholic steatohepatitis by upregulating the mitochondrial 
β-oxidation and redox system

[77]

CARN Sprague–Dawley rats Peritonitis positively affected by CARN following puncture sepsis [78]
Albino Wistar rats Proinflammatory cytokines following inflammation-induced osteoporosis [79]
Mice Ameliorated liver inflammation and serum proinflammatory markers in cancer cachexia 

through regulating CPT I-dependent PPARγ signaling
[80]

Acetyl-CARN Swiss Albino mice Protective and therapeutic effect in neuroinflammation [81]
Wistar rats Decreased inflammation by the overexpression of NFκB and IL-1 and IL-6 following as-

induced oxidative damage
[82]
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demonstrated in multiple clinical studies [113, 114]. Only 
one report of acute ALA-induced toxicity [115] was related 
to a suicidal attempt that was, however, reversed after a 
3-d supportive treatment. Overall, a body of literature has 
assessed the protective action of ALA against a number of 
xenobiotics in in vivo and in vitro investigations [reviewed 
by 116].

Coenzyme Q10 Coenzyme Q identifies a family of lipo-
hilic cofactors with ubiquitous presence in many organisms 
[117]. The most abundant form in humans is CoQ10, being 
characterized by a side chain consisting of ten isoprenoid 
units. As the other MNs considered, it is an endogenous 
molecule also introduced through the diet. Coenzyme Q10 
is a natural—and indispensable—compound present in 
mitochondria (electron transport chain). The use of CoQ10 
as a dietary supplement offers very low toxicity and does not 
induce serious adverse effects in humans [118]. CoQ10 was 
well tolerated at up to 900 mg/day according to Ikematsu 
et al. [119]. In addition, administration of exogenous CoQ10 
does not inhibit the physiological production of CoQ10 
[120, 121]. A recent study by Sadeghiyan Galeshkalami 
et al. [122] reported on the benefits of ALA and coQ10 com-
bination on experimental diabetic neuropathy by modulat-
ing OS and apoptosis.

Carnitine The amino acid derivative CARN and its active 
stereoisomer acetyl-CARN (ALC) have been used in a 
number of human studies alone or as part of a combination 

therapy since the early 1980s [123]. ALC is synthesized in 
many tissues and has low toxicity [124]. Administration of 
CARN in clinical studies including an extensive number of 
disorders (Alzheimer’s disease, depression, aging, diabetes, 
ischemia and other neurological diseases) did not report 
major toxic effects [6, 124]. Song et al. [125] performed a 
meta-analysis of randomized controlled trials and reported 
that CARN had good tolerance in patients with chronic heart 
failure, improving clinical symptoms and cardiac functions.

Toward combined MN administration

Based on the evidence from experimental studies and from 
clinical trials, it may be concluded that separate admin-
istration of ALA, coQ10, or CARN is safe in human and 
in animal health. Thus, as conceptually depicted in Fig. 1, 
both ALA and CARN were found to lower the levels of sev-
eral inflammation biomarkers, such as CRP, both in animal 
models [71] and in humans [100, 101, 104, 105]. Another 
direct link of proinflammatory conditions with MNs was 
provided by Donnino et al. [101] and by Chase et al. [102], 
who reported decreased CoQ10 plasma levels in patients 
affected by septic shock or by acute influenza.

A question may be raised about using individual MN 
administration in acute disorders, without any known 
attempt to test two or three combined MNs. Only a few 
clinical trials [122, 126, 127] investigated the effects of 
two combined MNs in chronic disorders, while no report is 

Table 3  Reports on the effects of mitochondrial nutrients (MN) on anti-inflammatory end points tested in clinical trials on patients with acute 
disorders

MN Disease/condition No. Of patients Duration Effects References

ALA Hemodialysis 63 8 weeks Decreased C-reactive protein (CRP) [83]
Cardiopulmonary surgery 30 24 ± 9.4 months Significantly decreased IL-6 and IL-8 levels [84]
Ischemia–reperfusion injury 26  > 14 days Decreased inflammatory markers, and early kidney 

dysfunction and pancreatitis
[85]

CoQ10 Septic shock 14 72 h Significantly lower CoQ10 plasma levels in septic 
shock patients than in healthy controls. CoQ10 
negatively associated with inflammatory mol-
ecules

[86]

Acute influenza 50 3 influenza seasons Significantly lower CoQ10 plasma levels in patients 
with acute influenza infection

[87]

Papillomavirus skin warts 156 90 days Decreased viral load and increased antiviral 
cytokine levels

[88]

CARN Hemodialysis or chronic 
peritoneal dialysis

113 6 months Suppressed inflammation, CRP [89]

Hemodialysis 42 6 months Decreased CRP [90]
Hemodialysis 36 12 weeks Decreased CRP [91]
Septic shock 31 28 days Decreased mortality [92]
Coronary artery disease 47 12 weeks Decreased inflammation markers(CRP, IL-6 and 

TNF-α)
[93]

Perioperative atrial fibrillation 134 48 h post-operation Decreased CRP [94]
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available—to the best of our knowledge—in testing three 
MNs concurrently.

Although there are no reports of the combined use of 
the three MNs in humans, any combined administration 
should not present potential problems when administered 
in patients suffering from acute disorders. According to the 
major and distinct interactions of MNs displayed in inflam-
matory conditions, as summarized in Fig. 1, it may be 
expected that: (a) CoQ10 administration should counteract 
the reported CoQ10 deficiency associated with inflamma-
tion and (b) both ALA and CARN administration should 
contribute to decreasing a set of inflammation biomarkers 
including, but not confined to, CRP. The present state-of-
art is confined to clinical trials in one MN. This might be 
seen as a self-mutilation in the frame of adjuvant strat-
egies targeted to mitigation of inflammatory conditions, 
such as sepsis, influenza, pneumonia, or other acute disor-
ders. Taken together, the available knowledge about safety 
and anti-inflammatory effectiveness of each MN should 
prompt the combined use of these autochthonous cofac-
tors in adjuvant therapeutic design originally designed 
for mitochondrial diseases [128]. The same rationale may 
be designed in view of mitigating acute disorders such 
as pneumonia infections. So far, clinical management 
of COVID-19 has been suggested by means of blocking 
cytokine storm through corticosteroids [129] or cytokine 
inhibitors [130, 131], controlling systemic inflammation 
via intravenous immunoglobulins injection [132], or inhi-
bition of Janus kinases [133], and intervention with anti-
malarial drugs to inhibit tissue infection and viral replica-
tion [134]. It is worth noting that tocilizumab, as tested in 
COVID-19 [132, 133], is a well-established IL-6-blocking 
drug used in rheumatoid arthritis, both decreasing OS and 
MDF [135, 136].

Working hypothesis: comparing redox potential 
of MNs and of other antioxidant agents

Counteracting the course of disorders characterized by 
a prooxidant state has been a goal of an extensive body 
of experimental and clinical literature (as summarized in 
Tables 2, 3). Apart from the attempts to utilize MNs for 
this purpose, a long list of natural or synthetic antioxi-
dants, vitamins and herbal preparations has been reported 
in the literature focused on mitigating COVID-19 progres-
sion [31–38]. Without regarding MNs as alternative means 
in counteracting inflammation, one might suggest combin-
ing these agents with well-established antioxidants, such 
as melatonin and/or resveratrol [31, 35].

However, with regard to MNs and the broader field, 
a major question arises about the quantification of the 
redox properties of any unspecified “antioxidant”, such 
as redox potential. To date, attempts to accomplish this 
task are frustrated by the multiplicity of parameters to 
be considered to obtain an endpoint that may be consid-
ered valid for this purpose. These parameters, mostly 
obtained in physico-chemical studies, encompass a num-
ber of variables, such as temperature, pH, concentra-
tion, dimerization, and multiple free radical formation 
[137–139]; thus, an effort to compare the antioxidant 
actions of several chemicals is presently unavailable. 
This therefore may suggest the timeliness of a quantita-
tive comparison of antioxidant actions, under defined—
physiological—conditions such as ionic strength, pH, 
and temperature, which may ref lect the parameters 
detected in basal vs. pathological conditions. To provide 
an experimental and clinical choice among the multi-
tude of antioxidants, this investigation, as yet unaccom-
plished, is much warranted.

Fig. 1  Outline of the major rela-
tionships between  proinflam-
matory conditions and MNs, 
displaying decreased CoQ10 
levels in plasma of patients with 
acute disorders, while ALA and 
CARN exert decreased levels 
of CRP and other inflammation 
biomarkers
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Conclusions

The present paper reviews the experimental and clinical 
literature regarding the use of MNs in acute disease condi-
tions, rather than presenting the more extensive literature 
about chronic disorders. The available literature provides 
definite evidence for the protective roles of ALA, CoQ10 
and CARN in counteracting inflammation in acute disor-
ders, such as sepsis and viral infections.

A rationale is presented for the clinical design of “triad” 
combinations of MNs [128] in countering the progres-
sion of acute disorders, by means of adjuvant protocols 
that may contribute to counteracting disease-related 
inflammation.

A working hypothesis is raised to achieve a compara-
tive evaluation toward the antioxidant properties of several 
candidate antioxidant agents.
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