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Abstract
In this study, we characterized the dynamics and analyzed the degree of synchro-
nization of the time series of daily closing prices and volumes in US$ of three 
cryptocurrencies, Bitcoin, Ethereum, and Litecoin, over the period September 
1,2015–March 31, 2020. Time series were first mapped into a complex network by 
the horizontal visibility algorithm in order to revel the structure of their temporal 
characters and dynamics. Then, the synchrony of the time series was investigated to 
determine the possibility that the cryptocurrencies under study co-bubble simulta-
neously. Findings reveal similar complex structures for the three virtual currencies 
in terms of number and internal composition of communities. To the aim of our 
analysis, such result proves that price and volume dynamics of the cryptocurrencies 
were characterized by cyclical patterns of similar wavelength and amplitude over 
the time period considered. Yet, the value of the slope parameter associated with the 
exponential distributions fitted to the data suggests a higher stability and predictabil-
ity for Bitcoin and Litecoin than for Ethereum. The study of synchrony between the 
time series investigated displayed a different degree of synchronization between the 
three cryptocurrencies before and after a collapse event. These results could be of 
interest for investors who might prefer to switch from one cryptocurrency to another 
to exploit the potential opportunities of profit generated by the dynamics of price 
and volumes in the market of virtual currencies.
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1 Introduction

The rapid and successful diffusion of Bitcoin and digital currencies, as a practi-
cal mean of payment for online services and goods and substitute of traditional 
money assets, has attracted a remarkable attention. Much of the social debate 
centers on cyber-security, legitimacy, and reputation issues due to possible hack-
ing attacks of the peer-to-peer network used for the electronic payments, which 
allows anonymous transactions and carries risks as money laundering, the financ-
ing of criminality and terrorism, and tax evasion.

More recently, the high volatility of price series has fostered an increasing 
interest in bubbles detection and price dynamics of cryptocurrencies in the asso-
ciated markets (Garcia et al. 2014; Bouoiyour et al. 2015; Donier and Bouchaud 
2015; Hencic and Gouriéroux 2015; Blau 2017).

Bariviera (2017), Bariviera et  al. (2017), and Lahmiri et  al. (2018) stud-
ied the long-range dependence of return and volatility, and other statistical fea-
tures of Bitcoin daily and intraday prices, from 2011 to 2017. They found the 
long-range correlation behavior in the daily volatility series of Bitcoin. Lahmiri 
and Bekiros (2018) showed that, as opposed to returns, Bitcoin prices incorpo-
rate and exhibit chaotic dynamics and nontrivial correlation patterns at different 
time scales. By using methods that originate in physics, Cheah and Fry provided 
empirical evidence that Bitcoin prices contain a substantial speculative bubble 
component (Cheah and Fry 2015) and identified shocks and crashes in crypto-
currency markets with specific evidence for negative bubbles (Fry and Cheah 
2016). Corbet et al. (2018) related Bitcoin and Ethereum prices to ‘‘fundamental 
drivers’’ to reveal the existence and dates of bubbles periods in the market. By 
applying the methodology discussed in Phillips et al. (2015), Cheung et al (2015), 
Li et al. (2019), and Bouri et al. (2019) aimed at detecting a bubble behavior in 
price dynamics at some point in time. Chaim and Laurini (2019) and Cretarola 
and Figà-Talamanca (2019b) related to strict local martingale theory to inves-
tigate price dynamics of Bitcoin by a continuous time stochastic model. More 
precisely, Chaim and Laurini (2019) estimated the volatility function of Bitcoin 
daily and high-frequency five minutes prices, whereas in Cretarola and Figà-Tala-
manca (2019b) the association of cryptocurrencies price dynamics with investors’ 
attention and sentiment is described with a regime-switching correlation param-
eter. The impact of market attention on Bitcoin returns and volatility is also the 
research interest in Kristoufek (2013, 2015), Figà-Talamanca and Patacca (2019), 
Cretarola et al. (2019), Cretarola and Figà-Talamanca (2019a). Lahmiri and Beki-
ros (2020) explored the evolution of the informational efficiency in 45 crypto-
currency markets and 16 international stock markets before and during COVID-
19 pandemic. They found that investing in digital assets during big crises could 
be considered riskier as opposed to equities, as cryptos showed more instability 
and more irregularity during the COVID-19 pandemic compared to international 
stock markets.
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For the study of dynamical systems, Luque et al. (2011) have proposed a novel 
method, called the horizontal visibility graph (HVG) algorithm, which captures 
the nature of different classes of series in a network context. By the HVG algo-
rithm, time series are proficiently converted into a network representation and 
then analyzed from a new and complementary viewpoint, and with a full set of 
alternative techniques and tools from the complex network theory. Most of all, 
the topology of the network inherits the structure of the time series, in such a way 
that periodic, random, and fractal series map into motif-like, random exponential 
and scale-free networks, respectively (Bollobás 1998; Watts and Strogatz 1998; 
Barabási and Albert 1999).

However, in spite of its suitability for the study of time series, the application 
of HVG algorithm to cryptocurrencies price dynamics is limited to the study car-
ried out in Liu et al. (2020) to investigate the Bitcoin price volatility and deepen the 
understanding of the markets for rare items, e.g., the gold market.

In this paper, we took advantage of the HVG algorithm to derive information 
about the process that generates the time series of three cryptocurrencies, Bit-
coin (BTC), Ethereum (ETH), and Litecoin (LTC), over the period September 1, 
2015–March 31, 2020.

Actually, BTC, ETH, and LTC are the most popular, big name cryptocurrencies. 
As of August 2020, BTC and ETH are the digital coins with the largest market capi-
talization (assets in circulation multiplied by asset price) just below 218 and 46 bil-
lion of US dollars (Investing.com 2020), respectively. LTC stays behind Bitcoin as 
the seventh largest digital currency by market cap. It is often referred to as “silver to 
Bitcoin’s gold” as LTC adopts many of the features of BTC, and changes some other 
aspects that in 2011 the founder Charlie Lee felt could be improved. In fact, com-
pared to BTC, LTC can produce a greater number of coins and it is characterized 
by faster transactions, lower transaction fees, and a new cryptographic algorithm for 
a more easily accessible process, said “mining,” for generating and releasing new 
coins and for verifying, authenticating, and then adding the ongoing network trans-
actions to a public ledger.

Among the three cryptocurrencies considered, ETH is the youngest one as it was 
launched by Vitalik Buterin on July 30, 2015. Therefore, we chose to consider a 
time frame starting from September 1, 2015, in order to have three time series of the 
same length.

Besides price and volume dynamics, in the proposed study, we also investigated 
the degree of synchronization between the three leading cryptocurrencies cited 
to detect potential interactions among bubble periods within the cryptocurrency 
markets.

Hence, two research questions guided our analysis. As a first concern, we ques-
tioned whether the source of unpredictability in the price dynamics of the virtual 
currencies under study origins in a chaotic, deterministic, or stochastic dynamical 
system, which is a fundamental issue for modeling and forecasting purposes. To this 
end, we used results from Lacasa and Toral (2010) showing that the three series map 
into a graph with exponential degree distribution, P(k) ∼ exp (−�k) , where the value 
of λ characterizes the specific process that generated the series. Second, we investi-
gated whether price and volume upswings and crushes in one cryptocurrency market 
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can lead to similar dynamics in other cryptocurrencies by running a synchrony anal-
ysis for the series investigated. To this aim, we followed the procedure described 
in Freeman et al. (2018) and Cazelles (2004). Potential interactions among bubble 
periods within the cryptocurrency market might influence diversification possibili-
ties and trading strategies. In fact, an investors might prefer to switch from one cryp-
tocurrency to another to exploit the opportunities of profit generated by the corre-
lated behavior of virtual currencies. The above research questions represent where 
our paper seeks to contribute to the existing literature.

The remainder of the paper is structured as follows. We start in Sect. 2 with the 
description of the data and methods set used in our study. In Sect. 3, we focus on the 
empirical analysis and summarize our results. Section 4 concludes.

2  Materials and methods

Daily closing prices and volumes in US$ of three virtual currencies, Bitcoin (BTC), 
Ethereum (ETH), and Litecoin (LTC) were downloaded from the Web site https ://
uk.inves ting.com (2020), for a total of 1680 trading days over the period September 
1, 2015–March 31, 2020. The research period resulted bounded by the shorter data-
set available for Ethereum, given the necessity to overlap the three series.

As shown in Fig.  1, raw data were first Hodrick–Prescott (HP, Hodrick and 
Prescott 1997) filtered to remove short-term fluctuations associated with the busi-
ness cycles and reveal long-term trends.

The HP filter is a nonparametric, nonlinear optimization algorithm used to 
remove the cyclical component (short-term fluctuations) of a time series from raw 
data. Basically, the series is divided into its growth (long-term trend) and cyclical 
components so that the squared deviation of the values from the trend is minimized. 
The HP filter is controlled by a smoothness parameter μ, which penalizes variability 
in the growth component series. The larger the value of μ, the higher the penalty, 
the smoother the long-term component (as μ approaches infinity the filter produces 
a line; μ = 0 leaves unmodified the series). Literature suggests optimal values for μ 
depending on the frequency of observations. Here we used μ = 6,250,000, which is 
the value recommended for daily data (Baggio and Klobas 2017).

Then, the horizontal visibility (HV) algorithm was used to map the smoothed 
time series into graphs according to the specific geometric criterion described in 
Lacasa et al. (2008).

In fact, in order to analyze the complex features of the dynamics shown by the 
cryptocurrencies investigated, we avoided methods as the Lyapunov exponents, the 
Hurst exponent, fractal dimensions, symbolic discretization, and measures of com-
plexity such as entropies or quantities derived from them (Kantz and Schreiber 2003; 
Sprott 2003), whose calculation requires sophisticated techniques and the interpre-
tation of results can be problematic for practitioners with little expertise (Baggio 
2008; Baggio and Sainaghi 2011).

Instead, the HVG approach is characterized by a straightforward implementation, 
is computationally less complex than the cited methods, and provides us with a quite 

https://uk.investing.com
https://uk.investing.com
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Fig. 1  Daily prices (p) and volumes (v) series in US$ of Bitcoin (BTC), Ether (ETH), and Litecoin 
(LTC), smoothed with the Hodrick–Prescott filter [μ = 6,250,000 (Baggio and Klobas 2017)]. The black 
solid curve represents prices whereas the gray dotted curve represents exchange volumes of the crypto-
currency
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simple mapping method for inheriting the time series properties in the structure of 
the associated graphs. “These features are going to make it easier to find connec-
tions between the underlying processes and the networks obtained from them by a 
direct analysis of the latter” (Núñez et al. 2012, p. 121).

Let Y =
{

yi
}

i=1,2,…,n
 be a time series with n observations. Each data point yi in 

the series is regarded as a node in the associated network graph, and hence, nodes 
inherit a natural ordering. For any two arbitrary nodes, m and n, they are said to have 
“horizontal visibility” to each other, and hence an edge connects them in the associ-
ated graph, if any other node h between them is associated with a lower record yh in 
the series. Formally, a horizontal visibility edge exists between two nodes m and n, 
if ym > yh and yn > yh , for every node h such that m < h < n.

The network extracted from a time series with the described algorithm is by con-
struction always undirected connected, as any data point in the series sees at least its 
nearest neighbors (Li et al. 2012).

For illustrative purposes, the horizontal visibility graph (HVG) algorithm is rep-
resented in Fig. 2, where vertical bars are used to plot into the corresponding graph 
the latest 10 data points in the Ethereum time series.

The main properties of the HVG representation can be found in Luque et  al. 
(2009). Here we just recall that a time series mapped into an HVG with an exponen-
tial degree distribution, P(k) ∼ exp (−�k) , shows chaotic, uncorrelated, or correlated 
stochastic dynamics depending on the value of the slope � . In particular, in Luque 
et al. (2009), the critical value �c = ln(3∕2) of the exponent has been found for the 
case of uncorrelated noise (white noise), by analytically computing the degree distri-
bution of the HVG associated with a bi-infinite sequence of independent and identi-
cally distributed random variables extracted from a continuous probability density 
function.

Thus, chaotic series map into an HVG with 𝜆 < ln(3∕2) , the slope is exactly on 
the frontier �c = ln(3∕2) for an uncorrelated random series, and 𝜆 > ln(3∕2) char-
acterizes a correlated stochastic process (Lacasa and Toral 2010). Therefore, the 

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1
2

3

4

5

6
7

8

9

10

Fig. 2  Representation of the algorithm to transform the last 10 data points in the Ethereum time series 
into the associated HVG
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higher the slope of the exponential degree distribution, the higher the stability and 
predictability of the system.

The existence of significant fluctuation cycles in the time series under study 
was also investigated looking at the community structure shown by the associated 
networks. Networks often show a structure organized in communities (or mod-
ules), where nodes belonging to a community are more densely connected among 
them than with nodes outside the group.

Communities are loosely connected to each other instead (Newman and Girvan 
2004; Fortunato 2010). The extent to which a network can be divided into well 
recognizable communities is measured by the index of modularity

where eii represents the fraction of connections between nodes belonging to the 
same module i and ai is the fraction of links with at least one end node inside mod-
ule i. Q is normalized between 0 (absence of modules) and 1 (perfect division into 
completely separated groups).

Here we used the algorithm described in Bondel et al. (2008) to identify the 
different modules and derive the value of Q. Basically, the technique implements 
an iterative model to determine the optimal number of partitions that maximize 
the index Q, given a resolution parameter to determine the granularity level at 
which communities are detected. In our analysis, we set the resolution equal to 1 
to get a standard modularity-based community detection.

Finally, the method proposed in Freeman et  al. (2018) and Cazelles (2004) 
was used to investigate the synchrony of the time series under study to deter-
mine whether explosivity in one cryptocurrency can lead to explosivity in 
other cryptocurrencies, namely the possibility that cryptocurrencies co-bubble 
simultaneously.

A time series, Y =
{

yi
}

i=1,2,…,n
 , was first transformed into a sequence of sym-

bols (letters) by comparing each data point yt to its nearest neighbors (the previ-
ous and the following record). Thus, yt was identified as a trough point, peak 
point, increase, decrease, or same in accordance with the following criteria: a 
trough point if yt < yt−1 ≤ yt+1 or yt < yt+1 ≤ yt−1 ; a peak point if yt−1 < yt+1 ≤ yt 
or yt+1 < yt−1 ≤ yt or yt+1 ≤ yt−1 < yt ; an increase point if yt−1 ≤ yt < yt+1 ; a 
decrease point if yt+1 ≤ yt < yt−1 ; and, finally, a stability point if yt−1 = yt = yt+1 . 

Q =
∑

i

(

eii − ai
)2
,

Fig. 3  Transformation of a time series into symbols
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Symbols A, B, C, D, and E were associated with each of the possible cases 
(Fig. 3), respectively. Each numerical time series was therefore transformed into a 
symbolic time series, disregarding any changes in amplitude and mean trend but 
preserving the fundamental rhythm.

Information theory was then used for quantifying the mutual rhythms of all pair-
wise combinations of symbolic time series. For any two time series, Y1 and Y2 , the 
statistical significance of the mutual information was calculated as:

where IY1,Y2 represents the mutual information, HY = −
∑n

i=1
p
�

yi
�

log2
�

p
�

yi
��

 
is the entropy of the symbolic series Y  , p

(

yi
)

 is the probability that Y  could 
take the value yi and measures the proportion of yi in the time series, and 
HY1,Y2 = −

∑n

i=1

∑n

j=1
p(yi)p

�

yj
�

log2
�

p
�

yi, yj
��

 represents their joint entropy. If Y1 
and Y2 are two independent random variables, then HY1,Y2 = HY1 + HY2 and, there-
fore, the mutual information IY1,Y2 is zero.

The mutual information was further normalized dividing IY1,Y2 by the sum of the 
entropy of the two symbolic time series in question, formally:

To assess the statistical significance of the uncertainty coefficient calculated for 
the cryptocurrencies studied, 500 null mutual information values for any two time 
series were constructed by a Markov process. If the chance was < 0.05, we rejected 
the “null” that an observed mutual information value is due to chance. The mutual 
information values calculated in this way are normalized and can be interpreted as 
a percentage of synchronization. In particular, the mutual information coefficient 
allows us to document if time series oscillate at the same rhythm along the respec-
tive mean trend (Cazelles 2004).

For the case under study, synchrony analysis is meant to serve the purpose of 
studying the potential interactions among bubble periods within the cryptocurrency 
markets investigated. For this reason, we used mutual information over statistical 
correlations, which instead measure the synchrony between the mean trends of the 
time series investigated.

Mutual information values and surrogate time series were obtained using an 
adapted version of the scripts available at https ://githu b.com/peopl e3k/pop-solar 
-sync (Github 2020).

3  Empirical analysis and results

The network degree distribution P(k) , con k = 1, 2, …, represents the fraction of 
nodes in the graph with a number of direct connections to other nodes (degree) 
larger than k . It can be assumed as a basic measure of heterogeneity of a network.

The cumulative degree distributions for the HVGs associated with the filtered 
BTC, ETH, and LTH price (p) and volume (v) series are plotted in Fig. 4. They all 

IY1,Y2 = HY1 + HY2 − HY1,Y2 ,

UY1,Y2 = 2 ∗
IY1,Y2

HY1 + HY2

.

https://github.com/people3k/pop-solar-sync
https://github.com/people3k/pop-solar-sync
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decay exponentially and are very close to one another. Deviations shown in the tail 
of the distribution are not significant and are due to the finite nature of the series.

The value of the λ exponent for the six time series under study is shown in Fig. 5 
where bars represent the 95% confidence interval. To better interpret our results, the 
exponent of the degree distribution for three null models, an uncorrelated stochastic 
(random) time series (Rnd), a fractional Brownian motion (fBm; the series was gen-
erated with Hurst exponent H = 0.5), and a series calculated from the Lorenz map 
(Lrnz; Parker and Chua 1989), was also computed as reference value.

Given �c = ln (3∕2) = 0.405 , all the � exponents calculated are above such fron-
tier and, therefore, none of the series studied is chaotic. ETH is the only crypto-
currency that exhibits a clear uncorrelated stochastic behavior in both the price and 
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Fig. 4  Cumulative degree distributions for the filtered HVGs. Bitcoin (BTC), Ethereum (ETH), and Lite-
coin (LTC) price (p) and volume (v) series are considered
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volume series. From 𝜆BTC ∼ 𝜆LTC > 𝜆c emerges that BTC and LTC appear to behave 
similarly to a correlated stochastic process, instead. For the three virtual currencies 
studied, the higher value of the � exponent for volumes reveals that traded quantities 
are more predictable than prices.

A simple comparison between the modularity structure (Table 1) of the HVGs 
unveils quite the same number of fluctuations over the time horizon considered for 
the price and volumes series of the three cryptocurrencies investigated.

Indeed, for the way the HVG is obtained, each community represents a cycle in 
the series. Moreover, the high measure (average normalized value = 0.968) for the 
modularity index proves that cycles in the whole series can be strongly identified.

Communities inside the graphs constructed for the virtual currencies investigated 
are marked with different colors in Fig. 6.

Similarities in the modularity partitions of the HVGs obtained for the three vir-
tual currencies have been also calculated (Table 2) by using a version of Rand index 
and mutual information (AdjRandIdx, AdjMutInfo) corrected for chance (Hubert 
and Arabie 1985). These indices are normalized so that the maximum means total 
agreement between partitions. For comparison, the last two columns show the val-
ues calculated using a purely random attribution of community membership (RndRI, 
RndAMI).

Results support a strong similarity between the internal (microeconomic) struc-
ture of the networks. Not only the HVGs present a roughly equal modularity struc-
ture, the internal composition of the communities is alike. To the aim of our analy-
sis, such result proves that price and volume dynamics of the cryptocurrencies were 
characterized by cyclical patterns of similar wavelength and amplitude over the time 
period considered.

This result paves the way for the last part of our analysis: the study of synchrony 
between the virtual currencies investigated.

Time series of price and volumes were compared using the method described in 
the previous section. The whole time horizon was divided into two subperiods (the 
vertical line in Fig. 1): before (a) and after (b) February 28, 2018. That date is close 
to the time of the collapse of price in the Bitcoin market.

Results (Table 3) indicate that the time series investigated display synchrony to 
a limited extent (marked values are for the pairs that show some higher synchroni-
zation). Actually, the relatively low values for the mutual information coefficients 
obtained do not prove that the time series under investigation are not correlated. 
They rather document that the three virtual currencies studied, in the time horizon 
considered, do not show a synchrony such that they might co-bubble simultaneously. 

Table 1  Communities and modularity index for the networks

BTC(p) BTC(v) ETH(p) ETH(v) LTH(p) LTH(v)

Modularity (no. commun.) 37 34 35 32 33 32
Modularity (cc) 0.946 0.938 0.945 0.935 0.940 0.932
Modularity normalized 0.972 0.966 0.973 0.965 0.969 0.962
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Yet, very interestingly, the degree of synchronization between the cryptocurrencies 
investigated changes before and after a bubble burst occurs. Indeed, with the only 
exception for LTC, which showed synchrony with the BTC price and volumes series 
also before the selected date, the value of the uncertainty coefficient increased con-
siderably after the drop in BTC price.

Although our results do not support the hypothesis of potential interactions 
among bubble periods, the investigation carried out reveals a higher synchrony in 
the behavior of the cryptocurrencies investigated after a collapse event.

Fig. 6  Community structure of the HVGs constructed: a BTC(p); b BTC(v); c ETH(p); d ETH(v); e 
LTC(p); f LTC(v). Colors (online) are used to mark nodes belonging to the same community
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4  Conclusions

In this paper, we provided an extended use of complex network analysis to crypto-
currency market.

Furthermore, we afforded an estimation of the synchrony between the price 
and volumes series of three virtual currencies, Bitcoin, Ethereum, and Litecoin, 
based on the procedure described in Freeman et al. (2018) and Cazelles (2004).

Price and volume time series were first mapped into the associated horizontal 
visibility graphs to reveal the complex structure of the virtual currencies studied. 
Afterwards, synchrony analysis was carried out to unveil possible common pat-
terns of upswing and collapse in the dynamics of price and volumes for the vir-
tual currencies investigated.

Summing up the main outcome, we can conclude that BTC, LTC, and ETH 
exhibit different dynamics: correlated stochastic for BTC and LTC, and a clear 
uncorrelated stochastic (random) behavior for ETH. Moreover, volume dynamics 
resulted more predictable than prices. A strong similarity was found between the 
currencies investigated in terms of their community structure, instead. Such result 
proves that price and volume dynamics of the three virtual currencies were char-
acterized by cyclical patterns of similar wavelength and amplitude over the time 
period considered. Yet, as the synchrony analysis revealed, such similarity did not 
translate into the possibility for the cryptocurrencies to co-bubble simultaneously. 
Indeed, with the only exception represented by the dynamics shown by the Litecoin 
market, the values of the uncertainty coefficient calculated for the other two crypto-
currencies changed considerably before and after the time of the collapse of price in 
the Bitcoin market. Although our results do not support the hypothesis of potential 
interactions among bubble periods, the investigation carried out revealed a higher 
synchrony in the behavior of the cryptocurrencies investigated after a collapse event.

Table 2  Similarities in the 
modularity partitions of the 
HVGs

AdjRandIdx AdjMutInfo RndRI RndAMI

BTC(p) BTC(v) 0.574 0.772 0.001 0.006
BTC(p) ETH(p) 0.541 0.772 0.001 0.006
BTC(p) ETH(v) 0.542 0.757 0.001 0.006
BTC(p) LTH(p) 0.557 0.775 0.001 0.006
BTC(p) LTH(v) 0.490 0.726 0.001 0.006
BTC(v) ETH(p) 0.532 0.762 0.000 − 0.002
BTC(v) ETH(v) 0.615 0.806 0.000 − 0.002
BTC(v) LTH(p) 0.548 0.772 0.000 − 0.002
BTC(v) LTH(v) 0.539 0.768 0.000 − 0.002
ETH(p) ETH(v) 0.553 0.767 0.000 0.001
ETH(p) LTH(p) 0.537 0.771 0.000 0.001
ETH(p) LTH(v) 0.479 0.730 0.000 0.001
ETH(v) LTH(p) 0.530 0.764 0.000 0.001
ETH(v) LTH(v) 0.593 0.787 0.000 0.001
LTH(p) LTH(v) 0.519 0.751 0.000 0.004
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Table 3  Pairwise normalized (uncertainty coefficient) mutual information values (0 lag) for the price (p) 
and volume (v) time series

Time horizon split in two periods: before (a) and after (b) 28/02/2018. Higher values, showing higher 
synchrony, are marked
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