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Abstract
The well-known novel virus (COVID-19) is a new strain of coronavirus family, declared
by the World Health Organization (WHO) as a dangerous epidemic. More than 3.5
million positive cases and 250 thousand deaths (up to May 5, 2020) caused by
COVID-19 and has affected more than 280 countries over the world. Therefore
studying the prediction of this virus spreading in further attracts a major public
attention. In the Arab Emirates (UAE), up to the same date, there are 14,730 positive
cases and 137 deaths according to national authorities. In this work, we study a
dynamical model based on the fractional derivatives of nonlinear equations that
describe the outbreak of COVID-19 according to the available infection data
announced and approved by the national committee in the press. We simulate the
available total cases reported based on Riesz wavelets generated by some refinable
functions, namely the smoothed pseudosplines of types I and II with high vanishing
moments. Based on these data, we also consider the formulation of the pandemic
model using the Caputo fractional derivative. Then we numerically solve the
nonlinear system that describes the dynamics of COVID-19 with given resources
based on the collocation Riesz wavelet system constructed. We present graphical
illustrations of the numerical solutions with parameters of the model handled under
different situations. We anticipate that these results will contribute to the ongoing
research to reduce the spreading of the virus and infection cases.

Keywords: Fractional differential equations; Novel coronavirus; Riesz wavelet
system; Smoothed pseudosplines; Mathematical model

1 Introduction
In March 2020, WHO has announced the novel coronavirus as a pandemic after the out-
break on the end of January 2020, when it was declared a public health emergency for the
global. Since then, the pandemic has affected almost all countries around the world and
killed more than 290,000 of people worldwide. The virus can easily spread from one to
another, and no treatment or vaccine can do the needs [1, 2]. Even though a vaccine could
be more than a year away, doctors are experimenting with drugs and therapies to help ease
the virus symptoms/spreading.
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Given the dangerous situation, many researchers started working on formulating models
that best describe the dynamics of all possible parameters responsible for the daily cases
reported including deaths, control the fatality rate, and prediction of COVID-19 behavior
in future within a specific region. For example, Alberto [3] has developed a mathematical
model to identify the number of days students could attend school to allow them a better
learning experience while mitigating infections of COVID-19.

It is known that several models can describe a specific system, which is a challenging
step. However, in this paper, we use the well-known parsimony principle, where the model
should be constructed in a simple way as possible but also with complexity when needed.

Fractional derivatives have been proven to be a useful tool in a wide area of applications
in science and engineering [4–15], including customary in groundwater analysis, the mod-
eling of infection disease, and epidemic systems to discover and predict the spreading of
many diseases. It is known that Covid-19 originated in bats and infected humans and can
infect several animals such as cats and ferret. There is no case (up to date) of direct trans-
mission from a bat to human, but yet a proposal says that there is a host-reservoir most
likely involved between them. We consider the model presented in [16] developed based
on

Bats ⇒ Hosts ⇒ Reservoir ⇒ People

formulation setting in terms of the Atangana–Baleanu fractional derivative. In this paper,
we use the Caputo fractional derivative definition to study the model. The advantage of
using this definition is that it allows traditional and various types of ICs in creation of a
dynamical model. Wavelets appear in a variety of advanced applications such as filter bank
constructions arising in image processing. This is largely due to the fact that wavelets have
the right structure to capture the sparsity in “physical” images, perfect mathematical prop-
erties such as its multiscale structure, sparsity, smoothness, compact support, and high
vanish moments. It has many applications in fractional integral and differential equations
(see, e.g., [17–30]).

Riesz wavelets in L2(R) have been extensively used in the context of both pure and nu-
merical analysis in many applications due to their well prevailing and recognized theory
and their natural properties such as sparsity and stability, which lead to a well-conditioned
scheme. In this paper, we present an effective and accurate technique based on Riesz
wavelets for solving the transmission model of COVID-19 based on the Caputo fractional
derivative. The advantage of such wavelets lies on their simple structure in the reduced
systems and in the powerfulness of obtaining approximated solutions for equations that
have weakly singular kernels. The proposed method shows a good performance and high
accuracy orders.

Let us recall some definitions and notation. A function φ ∈ L2(R) is called refinable
if

φ =
∑

kZ

a[k]φ(2 · –k), (1.1)
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where a[k] ∈ �2(Z) is finitely supported sequence, called the refinement mask of φ. The
corresponding wavelet function is defined by

ψ =
∑

kZ

b[k]φ(2 · –k), (1.2)

where b[k] ∈ �2(Z) is finitely supported sequence, called the high pass filter of ψ .
In this paper, for f ∈ L1(R) (which can be extended to L2(R)), we use the Fourier trans-

form

f̂ (ξ ) =
1√
2π

∫

R

e–ixξ f (x) dx.

The Fourier series of the sequence a is defined as

â(ξ ) =
∑

k∈Z
a[k]e–ikξ , ξ ∈R. (1.3)

Pseudosplines have attracted many researchers due to their significant contribution to
both numerical computations and analysis. The constructions of pseudosplines track back
to the well-known work by Daubechies et al. [31, 32], It is a family of refinable functions
with compact support and has extensive flexibility in wavelets and applications. Pseudos-
plines are known as a generalization of many well-known refinable functions such as B-
splines, interpolated, and orthonormal refinable functions [33]. We refer the reader to
[31, 32, 34–38] and references therein for more detail.

2 Riesz wavelets via smoothed pseudosplines
We use the smoothed pseudosplines introduced in [38] to construct Riesz wavelets and use
them to apply our numerical scheme for solving different types of FIDEs. Pseudosplines
of order (p, q) of types I and II, kφ(p,q), k = 1, 2, are defined in terms of their refinement
masks, where

∣∣1â(p,q)(ξ )
∣∣2 =

q∑

m=0

(
p + q

m

)(
cos(ξ /2)

)2(p+q–m)
sin2m(ξ /2),

and

2â(p,q)(ξ ) =
∣∣1â(p,q)(ξ )

∣∣2.

Note that the refinement mask of the pseudosplines of type I of order (p, q) is obtained
using the Fejér–Riesz theorem. The refinable pseudospline function generated using the
above refinement masks is defined by

kφ̂(p,q)(·) =
∞∏

m=1
kâ(p,q)

(·/2m)
, k = 1, 2. (2.1)

They are two types of smoothed pseudosplines defined by its refinable masks. For r ≥ p,
we have the smoothed refinable pseudosplines of type I (k = 1) and II (k = 2) of order



Mohammad et al. Advances in Difference Equations        (2021) 2021:115 Page 4 of 14

(r, p, q) such that

kφ(r,p,q)(·) = kφp,q ∗ χ
r–p
[– 1

2 , 1
2 ]

(·), k = 1, 2, (2.2)

where

χ
r–p
[– 1

2 , 1
2 ]

(·) = χ[– 1
2 , 1

2 ] ∗ · · · ∗ χ[– 1
2 , 1

2 ], for (r – p)-times,

where χA is the indicator function of a set A. Similarly, the refinement masks of both types
of kφ(r,p,q) for k = 1, 2, respectively, are given by

∣∣1â(r,p,q)(ξ )
∣∣2 =

q∑

m=0

(
p + q

m

)(
cos(ξ /2)

)2(r+q–m)
sin2m(ξ /2)

and, for r ≥ 2p,

2â(r,p,q)(ξ ) =
q∑

m=0

(
p + q

m

)(
cos(ξ /2)

)2q+r–p
sin2m(ξ /2).

Riesz wavelets have been extensively studied in the literature; see, for example, [39] and
other references.

Definition 2.1 We say that the set M(ψ�) = {ψ�
j,k = 2j/2ψ�(2j · –k),� = 1, . . . , N}, ψ� ∈

L2(R), generates a Riesz wavelet in L2(R) if for any finitely supported sequence {n�
j,k ,� =

1, . . . , N ; j, k ∈ Z}, there exist positive numbers c and C such that

c
N∑

�=1

∑

j∈Z

∑

k∈Z

∣∣n�
j,k

∣∣2 ≤
∥∥∥∥∥

N∑

�=1

∑

j∈Z

∑

k∈Z
n�

j,kψ
�
j,k

∥∥∥∥∥

2

≤ C
N∑

�=1

∑

j∈Z

∑

k∈Z

∣∣n�
j,k

∣∣2, ∀g ∈ L2(R), (2.3)

where

‖g‖2 = 〈g, g〉, and 〈f , g〉 =
∫

R

f (x)g(x) dx.

If M in Definition 2.1 is a Riesz wavelet for L2(R), then we have the following expansion
for any function f ∈ L2(R):

f =
N∑

�=1

∑

j,k∈Z

〈
f ,ψ�

j,k
〉
ψ�

j,k . (2.4)

Equation (2.4) can be truncated by

VMf =
N∑

�=1

∑

j≤M–1

∑

k∈Z

〈
f ,ψ�

j,k
〉
ψ�

j,k . (2.5)

Let us provide some examples of Riesz wavelet systems. Note that φ̂ is only implicitly
known as an infinite product. We strongly recommend the reader to have a look at Han’s
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book [39] (p. 68, Sect. 6) to get a complete picture about how to plot these wavelets and
details.

Example 2.1 For (r, p, q) = (6, 2, 1), we have the following refinable masks:

1â(6,2,1)(ξ ) =
1
2

(
√

3 + 1)e– 1
2 5iξ (1 + (

√
3 – 2)eiξ ) cos3

(
ξ

2

)
,

1b̂(6,2,1)(ξ ) = e–iξ
1â(6,2,1)(ξ + π ),

where

1φ(6,2,1)(2·) = 1â(6,2,1)(·) 1φ(6,2,1)(·),
1ψ(6,2,1)(2·) = 1b̂(6,2,1)(·) 1φ(6,2,1)(·).

Then M(1ψ(6,2,1)) forms a Riesz wavelet system for L2(R). Note that the vanishing moment
for the system is 6.

Example 2.2 For (r, p, q) = (9, 3, 2), we have the following refinable masks:

2â(9,3,2)(ξ ) =
1
4

cos10
(

ξ

2

)(
–156 cos(ξ ) + 33 cos(2ξ ) + 127

)
,

2b̂(9,3,2)(ξ ) = e–iξ
2â(9,3,2)(ξ + π ),

where 1â(9,3,2)(ξ ) is obtained using the Fejér–Riesz factorization theorem, so

∣∣1â(9,3,2)(ξ )
∣∣2 ≈ 2â(9,3,2)(ξ ),

where

2φ(9,3,2)(2·) = 1â(9,3,2)(·) 1φ(9,3,2)(·),
2ψ(9,3,2)(2·) = 1b̂(9,3,2)(·) 1φ(9,3,2)(·).

Then M(2ψ(9,3,2)) forms a Riesz wavelet system for L2(R). Here we find 1â(9,3,2)(ξ ) numer-
ically; see Fig. 1. Note that

∣∣∣∣1â(9,3,2)(ξ )
∣∣2 – 2â(9,3,2)(ξ )

∣∣ ≤O
(
10–13).

Definition 2.2 For a real function u(t) where t,α > 0, and n ∈ N, we define the following
known fractional derivative and integral operator:

• Caputo’s fractional derivative CFD,

Dα
∗ u(t) =

1
	(n – α)

∫ t

0

u(n)(x)
(t – x)α+1–n dx, n – 1 < α ≤ n.

• Riemann–Liouville fractional integral operator (R-LFI),

Iαu(t) =
1

	(α)

∫ t

0

u(x)
(t – x)1–α

dx, n – 1 < α ≤ n.
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Figure 1 The graphs of the masks |1â(9,3,2)(ξ )|2 and 2â(9,3,2)(ξ ) and their difference in Example 2.2

Figure 2 Reported cases of COVID-19 in the UAE with the Riesz wavelet fitting based on Examples 2.1 and 2.2

3 Transmission model and numerical algorithm based on Riesz wavelet fitting
The original data are fitted by a set of discrete Riesz wavelet coefficients, where features
can be extracted from these coefficients. The simulated data based on the Riesz wavelet
systems are illustrated in Fig. 2.

We consider the following new modified transmission model obtained by changing the
left-hand side of the system presented in [16] by changing the operator

ABC
a Dα

t u(t) to Dα
t u(t)

for all unknown functions Sp, Ep, Ip, Ap, Rp, M, where ρ represents the fractional-order
parameter. Note that the system is subject to nonnegative initial conditions. So the new
system is defined as follows:

Dα
t Sp(t) = �p – μpSp –

ηpSp(Ip + ψAp)
Np

– ηwSpM, (3.1)

Dα
t Ep(t) =

ηpSp(Ip + ψpAp)
Np

+ ηwSpM – (1 – θp)ωpEp – θpα, (3.2)
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Table 1 Parameters description and estimated fitted values given ρ = 0.9

Parameter Description Parameter value

Sp(t) The susceptible cases –
Ep(t) The exposed cases –
Ip(t) The infected cases –
Ap(t) The asymptotically cases –
Rp(t) The recovered cases –
M(t) The infected cases –
�p Birth rate 341.706
μp Natural mortality rate 0.0000353513
ηp Contact rate 0.01
ψp Transmissibility multiple 0.01
ηw Disease transmission coefficient 0.000001
θp The proportion of asymptomatic infection 0.09
ωp Incubation period (bats) 0.00039
ρp Incubation period (hosts) 0.001
τp recovery rate of Ip 0.1593
τab recovery rate of Ap 0.95
�p Contribution of the virus toM by Ip 0.0001
�p Contribution of the virus toM by Ap 0.00089
π Removing rate of virus fromM 0.009

Dα
t Ip(t) = (1 – θp)ωpEp – (τp + μp)Ip, (3.3)

Dα
t Ap(t) = θpρpEp – (τap + μp)Ap, (3.4)

Dα
t Rp(t) = τpIp + τapAp – μpRp, (3.5)

Dα
t M(t) = �pIp + �pAp – πM. (3.6)

Given the model parameters and its values in Table 1, it is reasonable to consider this
model with proper changes as it is formulated based on the resources and cases detected
in Wuhan, China. Since the cases are spread to more than 280 countries around the world,
some parameter values will be considered in the current study. For more detail about the
formulation and stability results, we refer to [16]. To illustrate the fitting, we use some
examples of Riesz wavelet systems to be used in the data fitting using the discrete Riesz
wavelet transform defined in (1.3) based on different types of smoothed pseudosplines of
orders I and II.

We provide a numerical algorithm based on the collocation method by discretizing the
domain function across the Riesz wavelet system used to solve the model. The system is
generated using the smoothed pseudosplines of types I and II with different orders. The
model defined in Equations (3.1)–(3.5) can be reduced as follows:

1
	(1 – α)

∫ t

0

S′
p(x)

(t – x)α
dx = �p – μpSp –

ηpSp(Ip + ψAp)
Np

– ηwSpM,

1
	(1 – α)

∫ t

0

E′
p(x)

(t – x)α
dx =

ηpSp(Ip + ψAp)
Np

+ ηwSpM – (1 – θp)ωpEp – θpρpEp,

1
	(1 – α)

∫ t

0

I ′
p(x)

(t – x)α
dx = (1 – θp)ωpEp – (τp + μp)Ip,
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1
	(1 – α)

∫ t

0

A′
p(x)

(t – x)α
dx = θpρpEp – (τap + μp)Ap,

1
	(1 – α)

∫ t

0

R′
p(x)

(t – x)α
dx = τpIp + τapAp – μpRp,

1
	(1 – α)

∫ t

0

M′(x)
(t – x)α

dx = �pIp + �pAp – πM.

Using collocation method based on the nodes ti, i ∈ N, in these equations, we obtain the
following equations that generate a system of nonlinear equations to be solved numeri-
cally:

–Dα
t Sp(ti) + �p – μpSp(ti) –

ηpSp(ti)(Ip(ti) + ψAp(ti))
Np

– ηwSp(ti)M(ti) = 0,

–Dα
t Ep(ti) +

ηpSp(ti)(Ip(ti) + ψAp(ti))
Np

+ ηwSp(ti)M(ti) – (1 – θp)ωpEp(ti) – θpρpEp(ti) = 0,

–Dα
t Ip(ti) + (1 – θp)ωpEp(ti) – (τp + μp)Ip(ti) = 0,

–Dα
t Ap(ti) + θpρpEp(ti) – (τap + μp)Ap(ti) = 0,

–Dα
t Rp(ti) + τpIp(ti) + τapAp(ti) – μpRp(ti) = 0,

–Dα
t M(ti) + �pIp(ti) + �pAp(ti) – πM(ti) = 0.

The parameter values listed in Table 1 were estimated based on some known results and
assumptions, taking into consideration the effect of each subgroup/population in the virus
spread. Based on official data on the COVID-19 in the UAE among the residents, we con-
sider the estimation of the parameters of the dynamics of the virus. This due to the fact
that the dynamics of the virus transmission from a country (e.g., the case study UAE) to
another (China) does not change much. In addition, the other parameters are related to
the structure of populations and has no affect on the nature of the virus.

The total population N(0) of the UAE in 2019 is approximately 9.666 millions. The life
expectancy in the UAE for the year of 2019 is 77.5. Therefore the natural mortality rate
is 1/(77.5 × 365). The birth rate is estimated by multiplying the value of total population
times the mortality rate, so it is estimated by the value 341.706. For the initial values of
the model, we consider the population size 9.666 millions for t = 0. We assume that the
number of infected people was 300 and, initially, there were no recovered cases, Rp(0) = 0.
Hence we have the following ICs:

Sp(0) =
9,344,440

Np(0)
, Ap(0) =

200
Np(0)

, Ep(0) =
321,060
Np(0)

, M(0) =
5000
Np(0)

.

Now we present some graphical illustrations based on the given parameter vales and sim-
ulation of the model given by Equations (3.1)–(3.5). The dynamics of COVID-19 based on
different values of α is depicted in Fig. 3. In Figs. 4, 5, and 6, we provide illustrations of
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Figure 3 Illustrations of the dynamics of the model parameters using various values of α

the stability of the model equilibrium by changing ICs, and we numerically calculate the
parameters of the model by considering various ICs of Sp, M, and E.

4 Conclusion
In this paper, we initially started the model formulation in terms of the classical integer-
order derivative and then apply the Caputo fractional derivative. The model using the Ca-
puto fractional derivative best describes the dynamics of the pandemic. The new resulting
fractional model of COVID-19 describes the virus dynamics based on the resources and
announced cases in the UAE.

We obtained some mathematical results for the model and simulated the original data
and fitted it using a new family of Riesz wavelets based on refinable functions that
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Figure 4 Illustrations of the dynamics of the model parameters using various ICs

have excellent properties such as symmetries and compact support. From the numeri-
cal simulation of the fractional model we notice that the fitted data were very accurate
compared to the original data and may provide a good start to detect how the virus
spreads.

We also provided graphical illustrations (Figs. 3–6) of the model parameters considering
different values of fractional order α and various ICs. The presented figures describe the
individuals behavior and its stability within the model equilibrium setting. It turns out
that decreasing the order results in a decrease of the infection rates. We believe that, the
suggested model is suitable to describe the dynamics of this virus and the nature of its
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Figure 5 Illustrations of the dynamics of the model parameters using various ICs

spreading. We intended to consider the model with more data resources to better view
the dynamics and virus spreading in the country. In future, we will extend the research
to include various parameters and aspects, specifically, to predict the virus and positive
cases under fitting the data with quarantine and stem cells factors.

In future, we are interested to work on the model presented in [3] by involving a new
fractional-order derivative and specifically based on the UAE to further better recognize
the dynamics of the new model to provide a feasible solution working successfully, espe-
cially for education authorities that are planning future activities.
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Figure 6 Illustrations of the dynamics of the model parameters using various ICs
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