
A Systems Immunology Approach to Plasmacytoid
Dendritic Cell Function in Cytopathic Virus Infections
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Abstract

Plasmacytoid dendritic cell (pDC)-mediated protection against cytopathic virus infection involves various molecular, cellular,
tissue-scale, and organism-scale events. In order to better understand such multiscale interactions, we have implemented a
systems immunology approach focusing on the analysis of the structure, dynamics and operating principles of virus-host
interactions which constrain the initial spread of the pathogen. Using high-resolution experimental data sets coming from
the well-described mouse hepatitis virus (MHV) model, we first calibrated basic modules including MHV infection of its
primary target cells, i.e. pDCs and macrophages (Mws). These basic building blocks were used to generate and validate an
integrative mathematical model for in vivo infection dynamics. Parameter estimation for the system indicated that on a per
capita basis, one infected pDC secretes sufficient type I IFN to protect 103 to 104 Mws from cytopathic viral infection. This
extremely high protective capacity of pDCs secures the spleen’s capability to function as a ‘sink’ for the virus produced in
peripheral organs such as the liver. Furthermore, our results suggest that the pDC population in spleen ensures a robust
protection against virus variants which substantially down-modulate IFN secretion. However, the ability of pDCs to protect
against severe disease caused by virus variants exhibiting an enhanced liver tropism and higher replication rates appears to
be rather limited. Taken together, this systems immunology analysis suggests that antiviral therapy against cytopathic
viruses should primarily limit viral replication within peripheral target organs.
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Introduction

Protection against life-threatening infections is a major function

of the immune system. The systems biology view of the induction

of the protective immune responses suggests that the kinetics of

innate immune responses critically impinge on the development of

pathogen-specific adaptive immune responses [1]. The major

services provided by cells of the innate system located in secondary

lymphoid organs (SLO) are (i) an early sensing of pathogen-

associated molecular patterns (ii) the reduction of pathogen spread

throughout the host by capturing pathogens, and (iii) the sustained

stimulation of the adaptive responses over sufficient periods of time

[2]. To mediate these challenging functions of pathogen capturing

and containment, and long-lasting antigen presentation, efficient

cell protection mechanisms are needed, especially in the case of

cytopathic virus infections.

Plasmacytoid dendritic cells (pDCs) are a CD11clow DC subset

that is characterized by a particular set of phenotypic markers and

special functional properties [3,4]. One of the major functional

characteristics of pDCs is the expression of pathogen recognition

receptors, such as Toll-like receptor (TLR)-7 and -9, which endow

these cells with the ability to rapidly produce large amounts of type

I interferons (IFNs) following encounter with RNA or DNA viruses

[5]. Hence, by providing a first wave of antiviral IFN, pDCs

immediately limit viral spread and set the stage for antigen-specific

immune responses.

The mouse hepatitis virus (MHV) infection represents a well-

understood paradigmatic system for the analysis of type I IFN

responses. MHV is a member of the Coronaviridae family that

harbor a number of viruses causing severe diseases in animals and

humans, such as acute hepatitis, encephalitis, infectious bronchitis,

lethal infectious peritonitis, and the severe acute respiratory

syndrome (SARS) [6,7]. In systemic MHV infection, spleen and

liver represent major target organs [8], and primarily hematopoi-

etic cell-derived type I IFN controls viral replication and virus-

induced liver disease [9]. We could recently show that pDCs are

the major cell population generating IFN-a during the initial

phase of mouse coronavirus infection [8]. Importantly, mainly

macrophages (Mw) and, to a lesser extent conventional DCs,

respond most efficiently to the pDC-derived type I IFN and
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thereby secure containment of MHV within SLOs [10]. Thus, the

type I IFN-mediated crosstalk between pDCs and Mws represents

an essential cellular pathway for the protection against MHV-

induced liver disease. In system biology terms, MHV infection

triggers a complex array of processes at different biological scales

such as protein expression, cellular migration, or pathological

organ damage. To focus on the front edge of the virus-host

interaction, the present analysis specifically addresses the early

dynamics (i.e. the first 48 h) of the type I IFN response to MHV

since this is decisive for the outcome of the infection. The

reductionist’s view of the most essential processes underlying the

early systemic dynamics of MHV infection, liver pathology and

the first wave of type I IFN production is summarized in Figure 1A.

Our studies on the role of pDCs in establishing the type I IFN-

mediated protection of Mws against cytopathic MHV infection

suggested that the spleen may function as a ‘sink’ contributing to

the elimination of the virus from the system. Under the condition

of pDC-deficiency or lack of type I IFN responsiveness of Mws, a

severe disease is observed [8,10] indicating that the operation of

the spleen might switch from a ‘virus sink’ to a ‘virus source’ mode.

This bi-modal function, i.e. the ability of the spleen to either

eliminate or disseminate the virus, is outlined in Figure 1B. The

switch between the two modes most likely depends on the number

of pDCs in spleen, their activation status, the dose of infection, and

the kinetics of virus spread. Thus, for an improved understanding

of pDC function in cytopathic virus infection, it is of fundamental

importance to determine the robustness and fragility of the early

type I IFN response within SLOs in relation to the ability of the

virus to counteract the IFN system and to replicate and cause

severe disease in peripheral tissues. Because of the inherent

complexity of the virus-host system, experimental approaches to

examine the dynamical aspects of such multiscale interactions are

limited. Therefore, we have used mathematical modeling in

conjunction with high-resolution experimental data to predict

kinetics and severity of infection in relation to variations in virus

and host parameters. Our results suggest that the spleen represents

a robust sink system for cytopathic virus infection able to cope with

substantial variations of the IFN secretion and virus production in

the spleen. However, the system is very fragile to minor increases

in the virus growth rate in peripheral tissues.

Results

To describe quantitatively the structure, dynamics and the

operating principles that permit pDCs to initially shield the host

against an overwhelming spread of the cytopathic MHV infection,

we followed a systems biology approach as outlined previously

[11,12]. First, we decomposed the system dynamics into a set of

‘elementary’, well-documented processes such as the virus

replication, target cell turnover and IFN-a decay, as well as the

production of virus and IFN-a by infected cells (Figure 1A). This

allowed us to estimate the individual decay rates, the virus-target

cell interaction parameters and the protective effect of IFN-a.

Once these elementary modules of virus-target cell interactions

were calibrated, we used them as building blocks to set up an

integrated mathematical model of pDC-mediated type I IFN

responses against MHV infection in mice.

Modeling the in vitro kinetics of MHV infection
To estimate the kinetic parameters of MHV-pDC interaction, we

used in vitro data on MHV infection of bone marrow-derived pDCs

as described previously [8]. The data set characterizes the response of

pDCs infection with MHV at a multiplicity of infection (MOI) of 1

(Figure 2A). To delineate a quantitative effect of IFN-a on virus

production, additional data from similar experiments conducted with

pDCs from mice deficient for the type I IFN receptor (ifnar2/2) were

used (Figure 2B). In addition to the MHV/IFN-a data, we considered

data on survival kinetics of MHV-infected pDCs from wt and ifnar2/2

mice generated independently in a separate series of experiments. The

MHV-pDC interaction parameters appearing in the basic model of

the type I IFN response (described in Materials and Methods) were

estimated by fitting simultaneously the data sets on wt and ifnar2/2

cells. The maximum likelihood approach for the log-transformed

data was used to quantify the model parameters with the resulting

best-fit description of the data by the model shown in Figure 2A and

2B. The resulting calibrated model for the in vitro pDC response to

MHV was further validated by comparing its predictions with in

vitro infection at an MOI of 0.1 and 0.01 (Figure S1) and also, by

determining the fraction of infected cells deduced from experimen-

tal data sets using an enhanced green fluorescence protein (EGFP)

expressing recombinant MHV [10] (Figure 2A and B). The

parameter values summarized in Table 1 provide additional insight

into the ‘numbers game’ between the virus and pDCs: (i) the average

MHV secretion rate of infected pDCs is rather low with ,1.7 pfu

cell21 h21, (ii) the IFN-a level required for 2-fold inhibition of MHV

production is about 46 pg/ml, (iii) the average secretion rate of IFN-

a per infected pDC is ,4.4*1024 pg h21 or, equivalently, ,15586

molecules h21. The latter estimate takes into account that the

molecular weight of IFN-a is about 17000 atomic mass units (a.u.)

and 1 a.u. = 1.67610224 g.

To identify the parameters of MHV infection and type I IFN-

mediated protection of Mws, we considered experimental data sets

that were generated using a broad spectrum of IFN treatment

conditions [10,13]. These data sets included (i) the early kinetics of

MHV replication in Mws at MOI = 1 (Figure 2C) and 0.0001

(Figure S2), (ii) Mw infection (MOI = 1) after treatment with 500

IUnits (1 IU>8.333 pg) of recombinant IFN-a (Figure 2D) and (iii)

Mw infection (MOI = 1) after pre-treatment with pDCs derived

supernatant containing 500, 200, 50 and 10 pg/ml of IFN-a
(Figure S3). The core data set using MOI = 1 was supplemented by

Mw survival data generated as described previously [10]. As shown

in Figure 2C and D, the experimental data for MHV infection

Author Summary

Human infections with highly virulent viruses, such as 1918
influenza or SARS-coronavirus, represent major threats to
public health. The initial innate immune responses to such
viruses have to restrict virus spread before the adaptive
immune responses fully develop. Therefore, it is of
fundamental practical importance to understand the
robustness and fragility of the early protection against
such virus infections mediated by the type I interferon
(IFN) response. Because of the inherent complexity of the
virus-host system, we have used mathematical modeling
to predict the sensitivity of the kinetics and severity of
infection to variations in virus and host parameters. Our
results suggest that the spleen represents a robust sink
system for systemic virus infection and that this system is
able to cope with substantial variations in IFN secretion
and virus production. However, the system is very fragile
to only minor increases in the virus growth rate in
peripheral tissues. Collectively, the mathematical approach
described in this study allows us to identify the most
robust virus and host parameters during early cytopathic
virus infection and can serve as a paradigm for systems
immunology analyses of multiscale virus-host interaction
of many life-threatening cytopathic virus infections.
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kinetics (MOI = 1) in wt Mws and after IFN treatment, are in close

agreement with the model prediction. The essential parameters

(Table 1) suggest that (i) MHV production by a single Mw is with

37 pfu h21 much larger than that of pDCs, (ii) the concentration of

IFN-a required for 2-fold inhibition of MHV production is about

0.1 pg/ml, and (iii) the per cell secretion rate of IFN-a is about

100-times smaller in Mws (361026 pg h21 or equivalently, 106

molecules h21) compared to pDCs. The calibrated modules for the

in vitro infection of pDCs and Mws thus provide valuable basic

building blocks that allowed to proceed with the modeling of early

kinetics (0–48 hours) of MHV growth and the IFN response in

vivo.

Modeling systemic MHV infection
To further validate the calibrated modules, we considered an

experimental in vitro system mimicking ‘in vitro spleen infection’.

To this end, we first determined the cellular composition of spleen

in terms of pDC and Mw population sizes during early MHV

infection. At the beginning of infection with 56103 pfu, the

geometric means for pDCs and Mws were 6.66105 cells and

5.26106 cells, respectively (relative variation ,10%), and

increased about two-fold by 36 hours following infection. Here,

we considered intermediate values, i.e. the ones observed 18 hours

post infection, so that 76105 pDCs and 66106 Mws were used to

model the infection dynamics in spleen. To evaluate the qualitative

consistency of the in vitro parameter estimates with the actually

observed phenotype of MHV infection in vivo, we modeled the

infections of the mixture of the above numbers of pDCs and Mws

with increasing virus doses (56101, 56103, 56105 pfu). As shown

in Figure S4, the model consistently predicts that the virus growth

is robustly controlled and that the extent of the activation of the

type I IFN response depends on the virus kinetics.

Figure 1. Conceptual scheme of type I IFN responses during cytopathic coronavirus infection. (A) Systemic view of the processes
determining the early kinetics of mouse hepatitis virus (MHV) infection. (B) Schematic depiction of the ‘sink’ versus ‘source’ function of spleen in
coronavirus infection.
doi:10.1371/journal.ppat.1001017.g001
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To set up the mathematical model for systemic MHV infection in

mice, we proceeded in stages. First, we estimated the virus transfer

rates between blood, spleen and liver together with the rate of alanine

aminotransferase (ALT) increase using the compartmental model

described in the Materials and Methods section, equations (5)–(8). A

reference data set characterizing the MHV growth in spleen, blood

and liver and serum ALT kinetics after intravenous (i.v.) infection

with 56103 pfu and 56105 pfu as shown in Figure 3A–D was used.

Next, we integrated the description of MHV infection in spleen (given

by equations (9)) with virus compartmental dynamics in the liver and

blood to formulate the systemic model of MHV infection specified by

the set of delay-differential equations (6)–(9). It is most likely that both

the splenic microarchitecture and the trafficking of the virus between

organ compartments have an effect on the kinetics of MHV infection

of splenic target cells as compared to the in vitro system. The

compartmental model parameters listed in Table 2 were estimated

via the maximum likelihood approach constrained by a detailed

description of MHV interaction with the populations of pDCs and

Mws in spleen. To accommodate for the observed differences

between the in vitro and in vivo systems, we set out to refine some of

the spleen model parameters to accurately describe the systemic virus

data (Figure 3). The number of reliably identifiable parameters in the

mathematical model is limited by the amount and quality of the

corresponding sets of experimental data which are available. To

move from in vitro to in vivo MHV infection the following

considerations were taken into account. First, the morphology of

spleen is drastically different from the in vitro cell suspensions, which

directly implies that the rate of target cell infection might differ. The

second factor is the spatial location of Mws versus pDCs in spleen.

Finally, the number of Mws in spleen is about 10-fold larger than the

pDC population, so that the in vitro estimated infection rate of Mws

would lead to an overwhelming virus growth in spleen before enough

pDCs get activated to produce a protective amount of type I IFN.

Therefore, the kinetics of Mw infection in spleen has been considered

in the first instance. The above reasoning in conjunction with the

parsimony principle and numerous trials to fit the in vivo data with

different selections of adjusted parameters led us to conclude that a

minimal set of three parameters ensured a consistent fitting of the vivo

infection data: the infection rate sV (reduced by 60-fold), the 50%

inhibition threshold h (increased by 10-fold) and the IFN secretion

rate rI (reduced by 3 fold) for Mws (Table 1). Taken together, the

stepwise developed mathematical model, comprised of calibrated,

refined and validated elementary modules, tightly fits the observed in

vivo kinetics of MHV infection, and thus, provides a quantitative

computational tool to assess the sensitivity of MHV infection

dynamics to variations in the basic parameters of virus-host

interactions.

Effect of pDC number and activation status on early
antiviral protection

As a first step in the analytical modeling process, we examined

the effect of pDC numbers and activation status on the protection

of Mws in spleen and the prevention of severe liver disease. As

readout, i.e. the prediction of pDC performance criteria, we

considered the maximum fraction of infected Mws in spleen and

the peak level of serum ALT during the first 48 hours post i.v.

infection with various doses of MHV. As shown in Figure 4A, the

decrease of the pDC population in spleen by 10-fold results in

increased virus titers but still keeps virus growth under control.

However, further depletion of pDCs leads to an overwhelming

virus growth. Mws in spleen represent about a 10-fold larger

population of cells able to secrete MHV at a rate that is 10-times

higher than pDCs. Therefore, protection of Mws against the

infection represents an important task that pDCs have to ensure.

Indeed, antibody-mediated depletion of pDCs considerably

increased infection of splenic Mws (Figure S5). Figure 4B (left

panel) shows the quantitative model predictions of how the

fraction of infected Mws in spleen depends on the number of pDCs

and the dose of infection. Ten-fold reduction of pDCs in spleen

still ensures that more than 90% of Mws remain uninfected for low

to intermediate infection doses. However, a further decrease of the

pDC population breaks their ability to keep the number of infected

Mws below 10%. Because there is an inherent delay in activation

of pDCs before the type I IFN secretion starts, we modeled the

situation when a certain fraction of splenic pDCs is pre-activated

Figure 2. MHV infection and IFN response kinetics in vitro.
Experimental data (open symbols) represent the geometric mean
6SEM. Virus titers (red), IFN-a concentration (green) and the fraction of
live cells out of the total initial target cell number (black) were used to
calibrate the model. (A) In vitro MHV infection of pDCs (MOI = 1).
Fraction of infected cells in the population of live cells is shown in blue.
(B) MHV infection in pDCs derived from ifnar2/2 mice. Fraction of
infected cells in the population of live cells is shown in blue.
Experimental validation had been performed using infection of pDCs
with EGFP-recombinant MHV (blue circles). (C) MHV replication in wild-
type Mws. The data on the amount of secreted IFN-a were used to
validate the calibrated model (green circles). (D) Effect of IFN pre-
treatment (500 IU of IFN-a, green line) on MHV replication in wt Mws.
doi:10.1371/journal.ppat.1001017.g002
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at the start of the infection. Figure 4C (left panel) shows the

predicted dependence of the infected Mws on the number of pre-

activated pDCs for MHV infection with 50 pfu. The results

allowed us to quantify the upper limit for the protective capacity

(PtCMw) of pDCs, if we define it as the ability to protect 90% of

Mws against infection. As few as 2000 activated pDCs suffice to

protect 66106 Mws, which leads to the estimate of PtCz
Mw*3000

Mw per pDC. To clarify how the pDCs in spleen contribute to

control against severe disease, we evaluated the peak ALT level for

i.v. infections with different MHV doses and different pDC

numbers (Figure 4B, right panel). If we define the ALT threshold

for protection against severe disease to be 103 IU/L, then the host

is protected against infection with physiological doses when the

number of pDCs in spleen is unchanged (76105) or 10-fold

reduced. The protection is lost if spleen contains only 76103 pDCs

and the dose of infection is larger than 100 pfu. This suggests that

the protection unit of pDCs (PtUALT ) required to prevent severe

disease after low dose infection is around 76103 pDCs. Pre-

activation of pDCs leads to a more efficient control of the

infection-associated disease as shown in Figure 4C (right panel).

The reduction in the total number of non-activated splenic pDCs

strongly affects the severity of disease. However, rather modest

pre-activation of as few as 200 pDCs leads to a reduction of peak

ALT below the threshold of severe disease (PtUz
ALT*2|102).

SLOs function to protect again severe disease by eliminating the

virus from the system. To examine how the sink function of spleen

depends on the availability of pDCs, we calculated the ratio of the

number of viruses produced locally in spleen versus virus

eliminated via trapping by target cells. The results summarized

in Figure 4D show that the capacity of the spleen to eliminate the

virus depends on the number of pDCs. Furthermore, the extent of

the sink function depends on the dose of infection, i.e. high dose

infection leads to a full activation of the capacity of spleen to work

Table 1. Best-fit parameter values for in vitro and in vivo MHV infection of pDC and Mw and the corresponding 95% confidence
intervals.

Biological parameter; notation (units) pDC best-fit estimates [95% CI] Mw best-fit estimates [95% CI]

Virus production rate, rV (pfu/cell/h) 1.7 [0.62, 5.5] 36.7 [18, 220]

Type I IFN production rate, rI (pg/cell/h) 4.461024 [1.361024, 1.661023] 3.061026/1.061026* [1.261026, 1.961025]

The threshold for 50% reduction of virus
production rate by type I IFN, h (pg/ml)

45.8 [26, 80] 0.09/0.97* [0.007, 0.7]

Infection rate of target cells, sV (cell/pfu/h) 1.361026 [7.061027, 2.861026] 5.461026/0.961027* [1.761026, .1024]

Initial fraction of infected cells for MOI = 1; CV(0) 0.11 [0.029, 0.26] 1.0

Virus production delay; tV (h) 5.96 [5.88, 5.98] 5.99 [5.98, 6.0]

Type I IFN production delay; tI (h) 5.77 [5.22, 5.93] 5.8

Gompertz death rate parameters for
infected cells, d0CV (1/h) & kCV (1/h)

0.2 & 0.087 [0.015, 6.0] & [0.029, 0.19] 0.049 & 0.057 [0.024, 0.11] & [0.012, 0.11]

*Refined by in vivo data.
doi:10.1371/journal.ppat.1001017.t001

Figure 3. Systemic dynamics of MHV infection in mice.
Experimental determination of virus kinetics in (A) spleen, (B) liver
and (C) blood, and (D) ALT levels in serum following i.v. infection with
MHV at intermediate (56103 pfu) and high (56105 pfu) doses (symbols).
The mathematical model (solid lines) integrates the detailed virus-target
cell kinetics and IFN response in spleen with compartmental virus
dynamics in blood and liver.
doi:10.1371/journal.ppat.1001017.g003

Table 2. Parameter estimates for a systemic spread of MHV in
the anatomical compartments and 99% confidence intervals.

Biological parameter, notation (units) Best-fit estimates [99% CI]

Virus transfer rate: blood to spleen, mBS (1/h) 3.46 [1.14, 88]

Virus transfer rate: blood to liver, mBL (1/h) 0.018 [0.8961023, 1.55]

Virus transfer rate: spleen to blood, mSB (1/h) 0.91 [0, 1.5]

Virus transfer rate: liver to blood, mLB (1/h) 0.61 [0.14, 5.7]

Virus elimination from blood, mBO (1/h) 1.22 [0, 94]

Virus growth rate in liver, bL (pfu/ml/h) 0.78 [0.32, 5.8]

Carrying capacity of the liver, KL (pfu/ml) 107 [4.66105, .1.56107]

Rate constant of ALT release into
blood, rA (IU/L)

0.6861023 [0.2861024, 0.01]

Decay rate of ALT, dA (1/h) 0.16 [0.01, 1]

Physiological level of ALT, A* (IU/L) 25

doi:10.1371/journal.ppat.1001017.t002
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Figure 4. Effects of variation in pDC number and activation status. (A) Virus kinetics in spleen following infection with low (56101 pfu),
intermediate (56103 pfu) and high (56105 pfu) dose infections under conditions of varying pDC numbers per spleen. (B) Protection of splenic Mws
determined as percentage of infected Mws (left panel) and disease severity determined as ALT levels serum (right panel) at 48 h post infection plotted
against different doses of infection. For physiological infection doses, the normal number of pDCs (blue line) and 10-fold depleted population (green

Modelling pDC Function
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as a sink for the virus. Overall, the spleen preserves its sink

function as long as the pDC population is above 104 cells.

Effects of IFN secretion and virus growth rates
Viruses have evolved various mechanisms to reduce the efficacy

of innate immune mechanisms [14]. Therefore, we examined a

situation of virus-mediated inhibition of type I IFN synthesis by

pDCs. Figure 5A shows the overall kinetics of the virus in spleen

and liver together with serum ALT level after low-, intermediate-

and high dose i.v. infections of hosts with either normal IFN

secretion rate rpDC
I ~4:4|10{4 pg cell21 h21, or 10- to 100-fold

reduction. Reduced IFN production by pDCs has a stronger

impact on virus kinetics in spleen (Figure 5A, upper row) but leads

to minor perturbations of virus growth in the liver (Figure 5A,

middle row), or ALT levels in serum (Figure 5A, bottom row). To

quantitatively estimate the robustness of the pDC-mediated

protection for spleen and liver we examined at a higher resolution

the effect of reduced IFN synthesis on the peak viral load with

infection doses ranging from 5 to 56104 pfu. Figure 5B shows that

the spleen is well-protected, i.e. the peak virus titer stays below 105

pfu/ml. However, once the IFN secretion rate is reduced by 100-

fold, the virus infection is out of control as manifested by

maximum titers of ,107 pfu/ml for all doses. In contrast to the

spleen, the peak virus titer in the liver increases with higher virus

doses and reduced type I IFN secretion rates (Figure 5C). Likewise,

the severity of disease, characterized by the peak ALT levels,

depends on the dose of infection and the IFN secretion rate by

pDCs in a way similar to the virus titer in liver (Figure 5D). If we

define a severe disease by ALT levels above 103 IU/L, then 76105

pDCs in spleen keep the host protected during the first two days of

infection with virus doses up to 500 pfu even when the IFN

secretion rate drops down to 1% of its normal value.

Viruses can acquire mutations that result in a faster replication

in target cells and a high-virulence phenotype [15,16]. A recently

published study on cytopathic influenza A virus infection [15]

provides quantitative details of the scale of virulence-enhancing

mutations and the resulting increase in virus growth rate. It follows

from the analysis of these virus growth data that the difference in

the intrinsic growth rate is about 30%. With this estimate as a

reference value, we used the mathematical model of MHV

infection to evaluate the limits of protection against severe disease

for increasing virus replication rates. Since various MHV strains

display significant differences in their ability to replicate in

different organ systems [17], two complementary scenarios were

considered: the increase in virus growth rate in the peripheral

organs (liver) versus SLOs (spleen). Figure 6A shows that pDCs in

spleen provide very limited protection against severe disease for

faster replicating strains of the virus. Indeed, only a 15% increase

in the growth rate of MHV in the liver leads to infection with ALT

levels rising to 103 IU/L within two days. The decrease of pDC

numbers in spleen makes the situation more fragile to even smaller

increases in the virus growth rate. The contour lines shown in

Figure 6A are the curves along which the value of ALT in serum at

48 h post infection remains the constant. The quantitative analysis

of the contour lines slope suggests that 1% increase in the

replication rate of the virus in the liver requires about 50%

increase in the initial pDCs number in the spleen for the ALT level

to have the same particular value. On the contrary, pDCs provide

a robust protection against severe disease when the virulence-

enhancing mutation leads to faster replication only in target cells

located in spleen (Figure 6B), i.e. splenic pDCs protect against

severe disease for up to 30-fold increase in the viral replication rate

in splenic Mws. Taken together, these analyses indicate that the

spleen represents a robust sink system able to cope with

substantially enhanced virus production as long as this gain of

viral fitness remains restricted to this SLO.

Discussion

An important hallmark of the innate immune response during

cytopathic virus infection is the ability of Mws to contain viral

particles in SLOs. For example, Mws in the marginal sinuses of

lymph nodes, capture viral particles from the incoming lymph

stream [18], and marginal zone Mws in spleen bind viruses

decorated by complement and natural antibodies and reduce

thereby dissemination of viruses to peripheral organs [19].

Coronaviruses can suppress early type I IFN responses in

particular cell types including Mws [14,20], thus leaving these

cells vulnerable to the cytopathic effects of the viral infection. Such

blocking of innate type I IFN induction has not been observed for

MHV and SARS coronavirus infection of mouse and human

pDCs, respectively [8]. Likewise, human pDCs seem not to be

sensitive to the inhibitory effects of the potent IFN antagonist NS1

of influenza virus [21]. Hence, pDCs are not only specialized for

immediate viral recognition and type I IFN production through

TLR-7 and -9 expression and the constitutive expression of IRF-7

[5], they probably also exhibit unique counter-measures against

viral IFN inhibitors. The interplay between pDCs and Mws is thus

a critical cellular axis for the preservation of SLO integrity during

early cytopathic virus infection. The systems immunology

approach presented in this study provides a better understanding

of the robustness and fragility of the pDC-mediated protection of

Mws and eventually, the host against cytopathic virus infection.

We implemented a genuine systems methodology using a building

block approach in which the elementary ‘modules of response’

were calibrated using in vitro data. In addition, in vivo

observations were used to further estimate essential parameters

which combine the modules in a ‘closed’ system. A key to the

development of this predictive mechanism-based modular math-

ematical model were model-driven experimental studies which

provided comprehensive data sets for an accurate and reliable

quantification of model parameters and validation of the model

predictions. Using this approach, we identified the limits of the

spleen’s capability to function as a sink for the virus produced in a

peripheral target organ. The robust sink function of the spleen is

guaranteed by the high protective capacity of single pDCs which

protect 103 to 104 Mws from cytopathic viral infection. Further-

more, we determined the minimal protective unit of pre-activated

pDCs in spleen to be around 200 cells which can rescue the host

from severe disease. The presented results suggest that the splenic

sink function remains operational as long as viral mutations do not

permit accelerated growth in peripheral tissues.

line) ensure protection of more than 90% of Mws. Further decrease of pDC population to 76103 cells is associated with large-scale infection of Mws
(red line). (C) Effect of pre-activation of pDCs in spleen on protection of splenic Mws determined as percentage of infected cells (left panel) and
disease severity determined as ALT levels in serum (right panel) at 48 h post infection (i.v. infection with 50 pfu). Numbers of pDCs per spleen were
varied as indicated. (D) Effect of the number of pDCs in spleen on the ratio of locally produced versus eliminated virus (left panel) and on sink versus
source function (right panel) after low (56101 pfu), intermediate (56103 pfu) and high (56105 pfu) dose infection under conditions of varying pDC
numbers per spleen.
doi:10.1371/journal.ppat.1001017.g004
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Our model suggests that maintaining the sink function of SLOs is

one of the major functions of pDCs. This notion is supported by

findings on the life cycle of pDCs, namely that after development in

the bone marrow, pDCs cells enter the blood circulation, and

subsequently home to SLOs [22–25]. The rapid accumulation of

pDCs in lymph nodes following exposition to inflammatory stimuli

[26,27] further corroborates that SLOs are – at least in the very early

phase of an infection – the most important compartment of pDC

activity. Potential effects of pDCs migrating to non-lymphoid organs

such as the liver in later stages of an infection have not been

considered in our model. It will be interesting to incorporate data on

pDC populations accumulating in peripheral organs during the later

phases of MHV infection in future modeling approaches. Likewise, it

will be important to address the potential functions of pDCs in the

modulation of innate and adaptive immune responses [4] in the terms

of systems immunology. A combination of the present mathematical

framework with, for example, novel experimental models of pDC-

deficiency [28,29] will open new avenues to describe the dynamical

aspects of such multiscale interactions. Furthermore, the presented

combination of experimental studies and mathematical modeling may

be used to further explore the contribution of virus-encoded factors

modulating tumor necrosis factor-enhanced liver inflammation [30]

Figure 5. Effect of type I IFN secretion rate on protection against disease. (A) Kinetics of MHV in spleen (upper row) and liver (middle row),
and impact on disease severity (bottom row) for normal (solid line), 10-fold reduced (broken line) or 100-fold (dotted line) reduced IFN secretion rate
by pDCs after low (56101 pfu), intermediate (56103 pfu) and high (56105 pfu) dose infection. (B) Dependence of peak virus titers in spleen (B) and
liver (C) after infection with the indicated doses on the relative reduction rate of IFN secretion rate by pDCs at 48 h post infection (i.v. infection with
indicated doses). (D) Disease severity determined as ALT levels in serum at 48 h post infection (i.v. infection with indicated doses) depending on the
relative reduction rate of IFN secretion rate by pDCs.
doi:10.1371/journal.ppat.1001017.g005
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or the role of important host factors such as the prothrombinase Fgl2/

fibroleukin which critically regulate virus-induced liver disease [31].

The last decade of research in immunology is characterized by a

tremendous advance in the high-throughput experimental technol-

ogies yielding detailed information on the system state at various

levels of resolution. This inspired a turn in basic and applied

immunology from reductionist dissection to systems integration with

mathematical modeling being an essential tool [32–35]. However, the

translation of the powerful modeling methodologies developed in

applied mathematics, such as the mathematical systems theory and

computational techniques into research tools appropriate for a

multiscale analysis of immunological phenomena remains a challenge

[1,36,37]. Indeed, recent reviews on the application of mathematical

analyses in immunology indicate that progress has mainly been made

in those studies which model the immune processes at a single

resolution level, rather than bridge multiple scales of description

[1,38–40]. The within-host population dynamics of antigen-specific

immune responses and pathogens and the single cell regulation of

Figure 6. Effect of virus growth rates on pDC-mediated protection against disease. (A) Sensitivity of the disease severity to variations in
pDC numbers (cells per spleen) and the global increase of viral replication rate in the liver (% increase). Disease severity is determined as peak ALT
levels in serum within 48 h post infection following i.v. infection with 50 pfu. (B) Determination of the system’s robustness against disease with
respect to variations in pDC numbers (cells per spleen) and increasing viral replication rates restricted to Mws in the spleen (Note: fold increase).
doi:10.1371/journal.ppat.1001017.g006
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lymphocyte activation represent the two most advanced fields.

Compared to antigen-specific responses, the development of

mathematical models for the description and analysis of innate

immune processes has remained a poorly investigated area [41–43].

Our study addresses the above two challenges of the integrative

modeling of antiviral immune responses: (1) it bridges the cell-

cytokine-virus population dynamics level with the physiological

function of the spleen in the host-pathogen interaction and (2)

provides a high-resolution quantitative description of the early type I

IFN response to cytopathic virus infection.

Taken together, the data-driven mathematical modeling of

pDC biology provides novel insight in systems’ level phenomena

such as the pDC protective capacity, the pDC unit of protection,

and the sink versus source function of the spleen. Furthermore, this

systems immunology approach has generated an in-depth to

understanding of the sensitivity of virus-host interaction indicating

that antiviral compounds directed against cytopathic viruses

should mainly target viral spread within non-lymphoid target

organs because pDC-derived type I IFNs within SLOs secure

efficient protection of vulnerable target cells.

Materials and Methods

Ethics statement
Experiments were performed in accordance with federal and

cantonal guidelines (Tierschutzgesetz) under the permission

numbers SG07/62 and SG07/63 granted by the Veterinary

Office of the Canton of St. Gallen.

Experimental procedures
C57BL/6 (B6) mice were obtained from Charles River

Laboratories (Sulzfeld, Germany). Type I IFN receptor deficient

mice (ifnar2/2) [44] on the B6 background were kindly provided

by Martin Bachmann, Cytos AG, Schlieren, Switzerland. MHV

A59 was generated from a molecularly cloned cDNA [45] based

on the Albany strain of MHV A59 and propagated on L929 cells.

EGFP-recombinant MHV was previously described [13]. Mice

were sacrificed at the indicated time points and organs were stored

at 270uC until further analysis. Blood was incubated at RT to

coagulate, centrifuged, and serum was used for ALT measure-

ments using a Hitachi 747 autoanalyzer. Virus titers in organs

were determined from frozen organs after weighing and

homogenization by standard plaque assay using L929 cells. pDCs

were obtained from spleens of B6 mice following digestion with

collagenase type II as described previously [8] and infection

kinetics following incubation with EGFP-recombinant MHV was

determined by flow cytometry [10]. Mws were isolated from the

peritoneal cavity of B6 mice and cell survival was determined with

the Cell Proliferation MTS Assay (Celltiter 96 Aqueous one

solution cell proliferation assay) from Promega.

Kinetics of virus, IFN and cells in vitro
The persistence of virus and type I IFN in medium displays an

exponential kinetics. The corresponding decay rate constants for

MHV (dV) and IFNa (dI) were estimated by a linear regression

procedure for the log-transformed values of the virus titer and IFN

concentration using GraphPad Prism v.4 software (http://www.

graphpad.com). The parameter estimates and their 95% Confi-

dence Intervals (CIs) are presented in Table S1.

The data on target cell persistence (C(t)) display kinetics which

differs for some cell types or under certain conditions from the

exponential (denoted by E) behavior C(t)~C(0):e{d0C
:t. It is

rather consistent with the Gompertz kinetics (denoted by G) as

described by equation

C(t)~C(0):e
{

d0C
kC

ekC
:t{1

� �� �
:

In contrast to the exponential decay, Gompertz kinetics allows

the death rate to increase over time and is particularly appropriate

for describing cohort-type cell population dynamics. The param-

eter kC represents the tempo of the per capita death increase, and

for kC small compared to the duration of experiment, the

Gompertz equation reduces to the exponential one. Fitting the

cell persistence data using either E-model or G-model showed that

N Mw survival over the time of the experiment (2 to 3 days) is best

approximated by the exponential decay with a half-life of 131

(hours), whereas

N pDCs follow the Gompertz kinetics with an initial half-life of

125 (hours) which reduces by a factor of 8.5 (to 14.7 hours) by

day 1 of the experiment.

The best-fit estimates for the death rate parameters for pDCs

and Mws are given in the Table S1. To check whether the

increased complexity of the G- versus E- model of decay is justified

by the pDCs data in hand, we evaluated for the models the Akaike

criterion of the information loss (AIC), defined as mAIC~

nd
:ln W(p�)ð Þz2(Lz1) [46], and the model description length

[47] evaluated from

mMDL~{ln(L(p�))z0:5:L:ln(nd=(2p))zln

ð
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det(I(p))

p
dp,

where nd is the total number of scalar observations, L is the number of

optimized parameters, W(p�) and L(p�) are the best-fit least-squares

function and the maximized likelihood function, I(p) is the Fisher

information matrix, and V is the domain of the parameter space on

which the model is defined. Both criteria of the model parsimony

turned out to be smaller for the Gompertz model: the mAIC was 30

versus 38 and the mMDL value was 19.5 versus 22.1.

Basic IFN response modules
To describe the antiviral IFN-a response in vitro, we reduced

the complexity of the IFN system to four principal constituents: the

virus titer/ml, V(t); the amount of type I IFN per ml, I(t); the

density of uninfected target cells (pDC or Mw), C(t); the density of

infected target cells, CV(t). The rate of change of the virus

population is determined by virus secretion from infected cells,

which starts after some latent period (time-delay) tV , and the

elimination through the infection of target cells with the rate

constant sV and a natural decay at rate dV . The virus dynamics is

modeled by the delay-differential equation:

d

dt
V (t)~

rV

1zI(t)=h
CV (t{tV ){sV

:V (t):C(t){dV
:V (t) ð1Þ

The protective effect of the type I IFN is assumed to reduce the

mean per cell virus production rate by 50% at the IFN

concentration specified by the inhibition constant h.

The rate of change of the amount of IFN-a in the system results

from the IFN production by virus infected target cells, which

occurs with some secretion delay, and the decay of the free

interferon molecules:

d

dt
I(t)~rI

:CV (t{tI ){dI
:I(t) ð2Þ

Modelling pDC Function

PLoS Pathogens | www.plospathogens.org 10 July 2010 | Volume 6 | Issue 7 | e1001017



The parameters of the equation, i.e. the average per cell

secretion rate rI , the delay tI and the decay rate dI determine the

IFN-a concentration dynamics. The loss of IFN-a due to

interaction with the target cell receptors is neglected.

The rate of change of the number of infected target cells is

modeled by the following equation

d

dt
CV (t)~sV

:V (t):C(t){dCV (t):CV (t) ð3Þ

The first term in the right-hand side describes the emergence of

the infected cells due to the virus infection of uninfected target cells

whereas the second one accounts for the death of infected cells.

The per capita death rate dCV (t) is either constant, or depends on

time according to Gompertz law.

Finally, the rate equation for the density of uninfected target

cells reads

d

dt
C(t)~{sV

:V (t):C(t){dC(t):C(t) ð4Þ

It considers the transition of uninfected cells to infected cells due to

virus infection and the death of cells at per capita rate dC(t), which

can be also time-dependent.

Compartmental model of virus growth
The infection of mice with MHV leads to virus spread and

growth in different organs. Virus population dynamics in any

anatomical compartment results from a superposition of intra-

compartmental production-elimination and inter-compartmental

transfer of the virus. The compartmental model in order to

describe the pathological consequences of MHV infection requires

consideration of the virus population dynamics in spleen VS(t),
liver VL(t) and blood VB(t). The simplest equations for the rate of

change of virus populations in the compartments are as follows:

d

dt
VS(t)~bS

:VS(t): 1{VS(t)=KSð Þ{mSB
:VS(t)

zmBS
:VB(t):QB=QS

ð5Þ

d

dt
VL(t)~bL

:VL(t): 1{VL(t)=KLð Þ{mLB
:VL(t)

zmBL
:VB(t):QB=QL

ð6Þ

d

dt
VB(t)~mLB

:VL(t):QL=QBzmSB
:VS(t):QS=QB

{ mBSzmBLzmBOð Þ:VB(t)

ð7Þ

The virus populations in spleen and liver are assumed to follow

a logistic growth with the outflow-inflow rates depending in a

linear way on the virus concentration in the corresponding

compartments. The parameters bS, KS,mSB, mBS denote the

intrinsic growth rate, carrying capacity and transfer rate to and

from blood for spleen. Similar parameters characterize the

processes in the liver. The blood compartment functions to

transfer the virus to spleen, liver and other organs with the rates

mBS, mBL, mBO, respectively. The intravenous injection of virus

dose V (0) is represented by the following initial conditions:

VB(0)~V (0)=QB, VS(0)~VL(0)~0. The following estimates of

the volumes (ml) for spleen, liver and blood were used: QS~0:1,

QL~0:5, QB~3:0 [48].

The infection of target cells with MHV induces a cytopathic

effect leading to an earlier cell death. The primary cell targets of

MHV in the liver compartment are hepatocytes. The severity of

the virus-induced liver disease is characterized by the liver enzyme

ALT concentration in serum A(t). The rate of change of ALT in

blood is modeled the following equation:

d

dt
A(t)~rA

:VL(t)zdA
: A�{A(t)ð Þ ð8Þ

where the increase of serum ALT concentration is proportional to

the virus population in the liver, with the parameter rA

characterizing the release rate of ALT into blood. The second

term takes into account that there is some homeostatic turnover of

ALT in serum with the decay rate dA.

The compartmental model of virus growth and ALT kinetics

provides a tool to quantify the transfer coefficients of the virus for

the spleen-blood-liver system (5)–(7) as well as the disease severity

due to the virus presence in the liver.

Systemic model of MHV infection and IFN response
An integrative mathematical model to study the protective function

of pDCs in MHV infection is assembled from the building block

models described above. The model considers spleen, liver and blood

compartments, in which MHV replication is described at different

resolution levels. For spleen, a detailed description of the virus-target

cells interaction is considered which includes MHV, IFN-a, pDCs,

Mws dynamics as modeled by the subset of equations (9):

d

dt
VS(t)~

rpDC
V

1zI(t)=hpDC

C
pDC
V (t{t

pDC
V )

z
rMQ

V

1zI(t)=hMQ
C

MQ
V (t{t

MQ
V )

{ s
pDC
V

:CpDC(t)zs
MQ
V
:CMQ(t)

� �
:VS(t)

{dV
:VS(t){mSB

:VS(t)zmBS
:VB(t):

QB

QS

d

dt
I(t)~rpDC

I
:CpDC

V (t{tpDC
I )zrMQ

I
:CMQ

V (t{tMQ
I )

{dI
:I(t)

d

dt
C

pDC
V (t)~s

pDC
V

:VS(t):CpDC(t){d
pDC
0CV

:CpDC
V (t)

d

dt
C

MQ
V (t)~sMQ

V
:VS(t):CMQ(t){d

MQ
0CV

:CMQ
V (t)

d

dt
CpDC(t)~{spDC

V
:VS(t):CpDC(t)

zd
pDC
0C

: C
pDC
0 {CpDC(t)

� �

d

dt
CMQ(t)~{s

MQ
V
:VS(t):CMQ(t)

zd
MQ
0C
: C

MQ
0 {CMQ(t)

� �

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð9Þ

Eighteen h post MHV infection, spleen contains about 76105

pDCs and 66106 Mws and there is a continuous turnover of these
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cell populations. Therefore, at any given moment the infected

target cells represent a heterogeneous population with respect to

the infection time and live expectancy rather than a cohort of cells

with synchronous kinetics. This is taken into account by assuming

exponential death kinetics for cell populations in spleen, with the

rate constants corresponding to the in vitro derived estimates. The

influx-elimination processes are described by the homeostasis

terms for uninfected pDCs and Mws (see the last two terms in the

last two equations). The equation for virus in spleen considers the

virus transfer between spleen and blood. The subset of equations

for virus dynamics in blood, liver and the serum ALT level

remains the same as equations (6)–(8). The following initial data

for the delay differential equation system (6)–(9) specifying the

intravenous infection were used

½VS(0), I(0), C
pDC
V (0), C

Mw
V (0), CpDC(0), CMw(0), VB(0),

VL(0),A(0)�~½0, 0, 0, 0, C
pDC
0 , C

Mw
0 , V0=QB, 0, A��

and ½CpDC
V (t), C

Mw
V (t)�~½0, 0� for tv0. For the numerical solution

of the initial value problem for the system of delay-differential

equations (6)–(9) we used either the MATLAB code dde23 (http://

www.mathworks.com) or our original solver for stiff systems of

delay equations [49].

Parameter estimation and identifiability
The process through which the available information is used in

order to estimate as accurately as possible the systems’ dynamics is

known as data assimilation. To calibrate the mathematical model

using the sampled data, we optimally combined heterogeneous

observations (coming from distinct series of experiments) with

model predictions by optimizing a ‘‘cost function’’, which

expresses the distance between observations and the correspond-

ing model values. The available data vary essentially in terms of

the sample sizes, which is common for studies of virus and cell

population dynamics. The most numerous data sets are the virus

kinetics data. The corresponding samples followed a log-normal

distribution. Assuming further that the errors in observations at

successive times are independent and the variance of observation

errors is constant for all observation times, we applied the

maximum likelihood (ML) approach to parameter estimation

as we described in detail in [48]. We searched for a vector of best-

fit parameters p�, by maximizing the likelihood function

L(p) specifying the probability of obtaining the observed data.

Under the above assumptions, this optimization is equivalent

to minimizing the value of the total misfit between the

available observations and the model as defined by

W pð Þ~Wtime{course pð ÞzWDose{effect pð Þ. The first term specifies

the squared deviation between the log-transformed model and

experimental time-series data, and the second one refers (when

applicable) to effects of specific treatment (recombinant IFN-a) or

infection scenario in vitro (e.g. coculture experiments with pDCs

and Mws) on the virus titer at a given time. The parameter

estimation was carried out using either MATLAB 7.0 routines

(http://www.mathworks.com) or Absoft Pro Fortran Developer

(http://www.absoft.com) and IMSL function minimization code

ZXMIN based on a quasi-Newton method.

The number of reliably identifiable parameters in the

mathematical models is limited by the amount and quality of

the corresponding sets of experimental data which are available

and also by the model structure. As the ‘large-scale’ systemic

model of MHV infection was built using a modular (rather than

monolithic) approach broadly accepted in systems biology [50], we

examined the identifiability properties of the basic modules.

Having the best-fit parameter estimates and their confidence

intervals, we examined a posteriori algebraic identifiability [51] of

the modules following the multiple time points method [52]. The

method is based upon elimination of unobserved state variable

from the original system of equations to obtain the identification

equation by a combination of high-order derivatives of the

observed variables and the availability of the measurements at a

number of time points.

The algebraic identifiability analysis of the basic IFN response

module (equations 1–4) showed that if virus titer, IFN concentra-

tion and the fraction of live cells are the observable state

characteristics, then the time-lag of virus production, the 50%

inhibition threshold and the virus secretion rate represent a group

of functionally related parameters, i.e. their estimates depend on

each other with the statistical uncertainty further to be

characterized by the confidence intervals. This dependence is

consistent with them entering together the virus production term

in equation (1) of the basic module. The other implication is that

the structure permits the other model parameters to be identified.

The identifiability test of the compartmental model (equations 5–

8) suggests that it is identifiable, provided that the observable

variables are the virus in spleen, blood and liver and the serum

ALT blood, which is the current case. Furthermore, a global

sensitivity analysis was performed which allowed to rank the

influence of random variations in the model parameters on the

variation in the serum ALT level. The methodology and the

results are presented in Table S2 and the accompanying text.

Supporting Information

Figure S1 Viral replication in MHV-infected pDCs in vitro at

MOI = 0.1 and 0.01. Virus produced at 24 hours after MHV

infection of 105 pDCs predicted by the mathematical model is

compared to experimentally observed values. pDCs from wt and

ifnar2/2 mice. At MOI = 0.1 (black solid lines, squares) the data

represent the geometric mean 6 SD from 5 experiments. At

MOI = 0.01 (red dotted lines, circles) the data represent the

geometric mean 6 SD from 2–4 experiments. Taking into account

that the variability between experimental series is about 0.5 at the

log10 - scale, the model calibrated on independent sets of data

provides a valid description of the system.

Found at: doi:10.1371/journal.ppat.1001017.s001 (0.07 MB

DOC)

Figure S2 The kinetics of viral replication in wt macrophages in

vitro at MOI = 0.0001. The virus (red line), type I IFN (green line)

and infected cell (blue line) kinetics are shown. The measurements

of the virus titer (circles) observed at 12 and 24 hours after MHV

infection of 105 macrophages are depicted.

Found at: doi:10.1371/journal.ppat.1001017.s002 (0.06 MB

DOC)

Figure S3 The effect of pDCs derived supernatant on MHV

replication in wt macrophages in vitro at MOI = 1. The virus

production in vitro was measured in wt macrophages pre-treated

with the indicated amounts of IFNa-containing supernatant (500,

200, 50, 10 pg/ml). Macrophages from B6 mice were plated at

56105 cells/well of the volume 500 ml. The data represent the

geometric mean 6 SD from 4 to 8 independent experiments.

Found at: doi:10.1371/journal.ppat.1001017.s003 (0.05 MB

DOC)

Figure S4 Dynamics of MHV infection as described by the ‘in

vitro spleen’ approach. The virus kinetics predicted by the

mathematical model for in vitro infection of 76105 pDCs and
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66106 Mws. Low (56101 pfu), intermediate- (56103 pfu) and high

(56105 pfu) dose infections are considered. The model consistently

predicts the efficient containment of virus replication (left panel)

and the dose dependent activation of the type I IFN synthesis

(right panel).

Found at: doi:10.1371/journal.ppat.1001017.s004 (0.13 MB

DOC)

Figure S5 Infection of macrophages assessed by in situ analysis.

C57BL/6 mice were infected i.p. with 56105 pfu MHV. For

depletion of pDCs, mice were injected i.p. with 0.5 mg of a-

mPDCA-1 (Miltenyi Biotec) 12 h prior to infection or left

untreated (n = 3 mice per group). (A) Fluorescence microscopic

analysis of spleen sections at 48 h post infection using antibodies

against B220 (blue), MHV-N (green) and F4/80 (red). Original

magnification (6400). (B) Quantitative evaluation of macrophage

infection. Values indicate numbers of MHV-N+F4/80+ per high

power field (mean 6 SEM). Three sections from each mouse were

analyzed.

Found at: doi:10.1371/journal.ppat.1001017.s005 (0.25 MB

DOC)

Table S1

Found at: doi:10.1371/journal.ppat.1001017.s006 (0.05 MB

DOC)

Table S2

Found at: doi:10.1371/journal.ppat.1001017.s007 (0.10 MB

DOC)
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