Чумачкова Е.А., Дмитриева Л. Н., Краснов Я. М., Осина Н. А., Сафронов В.А., Иванова А.В., Карнаухов И. Г., Караваева Т.Б., Щербакова С. А., Кутырев В. В.

РАСПРОСТРАНЕНИЕ ВАРИАНТОВ ВИРУСА SARS-COV-2, ВЫЗЫВАЮЩИХ ОЗАБОЧЕННОСТЬ (VOC) И ИНТЕРЕС (VOI) НА ОСНОВЕ КОЛИЧЕСТВА ИХ ГЕНОМОВ, ДЕПОНИРОВАННЫХ В БАЗУ ДАННЫХ GISAID ЗА НЕДЕЛЮ с 10.07.2021 г. по 16.07.2021 г.

ФКУЗ Российский научно-исследовательский противочумный институт «Микроб» Роспотребнадзора, Саратов, Российская Федерация

В обзоре представлен анализ геновариантов вируса SARS-CoV-2, вызывающих озабоченность (VOC) и интерес (VOI) на основе их геномов в базе GISAID за неделю с 10.07.2021 г. по 16.07.2021 г.

На сегодняшний день в базе данных GISAID всего представлено 2 375 621 геном вируса SARS-COV-2, за прошедшую неделю в базу данных депонировано еще 105 262 генома (за предыдушую неделю 83 494 генома).

Варианты, вызывающие озабоченность (VOC)

По данным ВОЗ на 13 июля 2021 г. вариант вируса SARS-COV-2 Alpha зарегистрирован в 178 странах, Beta - 123, Gamma - 75, Delta – 111.

Информация по обновленным данным о депонированных геномах вируса SARS-COV-2 вариантов VOC: 202012/01, **B.1.1.7** (**Alpha**), 501Y.V2, **B.1.351** (**Beta**), P.1 (**Gamma**) и **B.1.617.2** (**Delta**) в базе GISAID дана в Приложении 1 таблица 1.

Вариант VOC 202012/01 (линия В.1.1.7), Alpha

Относительно 9 июля в базе данных GISAID представлено еще 21 243 новых генома вируса SARS-COV-2, относящихся к варианту VOC 202012/01 (Alpha) (за предыдущую неделю 25 519 геномов). Итого 1 006 329 геномов варианта 202012/01.

В базе данных GISAID зафиксированы 156 стран и территорий, в которых циркулирует геномы варианта Alpha: Азербайджан, Албания, Ангилья, Ангола, Антигуа и Барбуда, Австралия, Австрия, Аргентина, Армения, Аруба, Бангладеш, Бахрейн, Барбадос, Белиз, Бельгия, Беларусь, Бермуды, Босния и Герцеговина, Бразилия, Британские Виргинские острова, Буркина-Фасо, Болгария, Бонэйр, Великобритания, Венгрия, Вьетнам, Габон, Гаити, Гана, Гамбия, Гватемала, Гваделупа, Гвинея-Бисау, Германия, Гибралтар, Гондурас, Гренада, Греция, Грузия, Гуам, Дания, Джибути, ДРК, Доминика, Доминиканская республика, Египет, Замбия, Израиль, Индия, Индонезия, Иордания, Ирак, Иран, Исландия, Испания, Италия, Ирландия, Казахстан, Канада, Камбоджа, Камерун, Каймановые острова, Канарские острова, Катар, Кения, Кипр, Китай, Колумбия, Косово, Кот-д'Ивуар, Кюрасао, Коста-Рика, Кувейт,

Латвия, Ливан, Литва, Лихтенштейн, Люксембург, Майотта, Мальта, Малайзия, Малави, Мартиника, Мексика, Молдавия, Маврикий, Марокко, Монако, Монтсерра́т, Мьянма, Мозамбик, Нигер, Нигерия, Нидерланды, Новая Зеландия, Норвегия, Непал, ОАЭ, Оман, Палестина, Пакистан, Перу, Польша, Португалия, Парагвай, Республика Гвинея, Республика Конго, Реюньон, Россия, Румыния, Руанда, Сев. Македония, Саудовская Аравия, Сенегал, Сентлюсия, Сербия, Сингапур, Синт-Мартен, Содружество Северных Марианских Островов, Сомали, Словакия, Словения, Суринам, США, Таиланд, Тайвань, Теркс и Кайкос, Того, Тринидад и Тобаго, Тунис, Турция, Украина, Уганда, Уоллис и Футуна, Филиппины, Финляндия, Фарерские острова, Франция, Французская Гвиана, Хорватия, Черногория, Чехия, Чили, Центральноафриканская Республика, Швеция, Швейцария, Шри-Ланка, Эстония, Эквадор, Экваториальная Гвинея, Эфиопия, ЮАР, Южная Корея, Южный Судан, Ямайка, Япония.

За последние 4 недели в абсолютных значениях наибольшее число геномов варианта 202012/01 (Alpha) депонировали США (2 742), Швеция (916), Италия (892), Франция (800). На 16 июля 2021 года динамика доли депонированных в базу GISAID геномов вируса вариантов 202012/01 (Alpha) дает следующую картину по странам:

```
Австралия – стабилизация на уровне 7,9 %%;
Австрия – увеличение от 32,8 до 49,2 %;
Бельгия – уменьшение от 59,8 до 28,6 %;
Босния и Герцеговина – уменьшение от 38,5 до 8,3 %;
Великобритания – уменьшение от 1,7 до 0,9 %;
Германия – уменьшение от 43,0 до 30,8 %;
Гваделупа – увеличение от 62,5 до 87,5 %;
Дания – уменьшение от 59,7 до 21,5 %;
Индонезия – стабилизация на уровне 0,9 %;
Ирландия – уменьшение от 56,7 до 18,3 %;
Италия – стабилизация на уровне 36,4 %;
Испания – уменьшение от 33,6 до 18,6 %;
Израиль – уменьшение от 0,7 до 0,5 %;
Кувейт – увеличение от 0 до 4,2 %;
Литва – стабилизация на уровне 35,6%;
Мальта – уменьшение от 22,2 до 6,3 %;
Мексика – стабилизация на уровне 4,3 %;
Нидерланды – уменьшение от 50,7 до 37,9 %;
Норвегия – стабилизация на уровне 52,7 %;
Польша – уменьшение от 50,7 до 39,8 %;
Португалия – уменьшение от 18,9 до 8,7 %;
Сингапур – стабилизация на уровне 0,8 %;
Синт-Мартен – уменьшение от 56,3 до 39,7 %;
Словакия – увеличение от 5,2 до 60,1 %;
Словения – уменьшение от 73,6 до 46,0 %;
```

```
США – уменьшение от 29,2 до 3,4%;

Таиланд – увеличение от 40,0 до 47,7 %;

Франция – увеличение от 15,2 до 29,8 %;

Швеция – уменьшение от 41,4 до 45,2 %;

Шри-Ланка – уменьшение от 48,8 до 33,8 %;

Щри-Ланка – уменьшение от 76,7 до 62,5 %;

Чили – увеличение от 0,9 до 1,6 %;

Чехия – уменьшение от 51,5 до 45 %;

Эквадор – стабилизация на уровне 5,4 % (мало данных);

ЮАР – уменьшение от 3,3 до 1,1 % (мало данных);

Япония – стабилизация на уровне 35,9 %.
```

На анализируемой неделе в большинстве стран мира наблюдается снижение и стабилизация доли выделенных вариантов вируса из Великобритании, геномы которых депонированы в базе GISAID.

Вариант 501Y.V2, ген S (линия В.1.351), Beta.

За прошедшую неделю в базу данных было добавлено еще 774 генома (за предыдущую неделю 1470), относящихся к линии В.1.351. С 01 октября 2020 года представлено всего 29038 геномов вируса линии В.1.351.

Всего по базе данных GISAID депонированы геномы варианта Веta из 104 стран и территорий: Австралия, Австрия, Аруба, Ангола, Аргентина, Бангладеш, Бахрейн, Ботсвана, Болгария, Бельгия, Бразилия, Бруней, Великобритания, Гана, Гваделупа, Гвинея-Бисау, Германия, Габон, Греция, Грузия, Гуам, Дания, ДР Конго, Джибутти, Замбия, Зимбабве, Израиль, Иордания, Италия, Испания, Ирландия, Иран, Ирак, Индия, Индонезия, Камбоджа, Канада, Камерун, Кот-д'Ивуар, Кения, Колумбия, Коста-Рика, Китай, Кувейт, Катар, Латвия, Лесото, Литва, Люксембург, Малави, Малайзия, Мальта, Мартиника, Мозамбик, Майотта, Маврикий, Мексика, Намибия, Нидерланды, Норвегия, Новая Зеландия, ОАЭ, Оман, Пакистан, Панама, Португалия, Польша, Россия, Руанда, Румыния, Реюньон, Саудовская Аравия, Северная Македония, Сингапур, Синт-Мартен, Сомали, Суринам, Словакия, Словения, США, Тайвань, Тайланд, Тунис, Турция, Того, Уганда, Филиппины, Финляндия, Франция, Французская Гвиана, Хорватия, Чили, Чехия, Швеция, Швейцария, Шри-Ланка, Экваториальная Гвинея, Эсватини, Эстония, Южная Корея, ЮАР, Южный Судан, Япония.

За последние 4 недели в абсолютных значениях наибольшее число геномов варианта 501Y.V2 (линия В.1.351) депонировали ЮАР (44) и Франция (91) и Ботсвана (45). Информация по числу депонированных геномов варианта 501Y.V2 обновилась из следующих стран:

```
Австралия – уменьшение от 2,1 до 0,6 \%; Бельгия – стабилизация на уровне 0,2 \%;
```

```
Ботсвана – уменьшение от 21,5 до 15,7 %;
Великобритания – уменьшение от 0,01 до 0,006 %;
Германия – стабилизация на уровне 0,4 %;
Дания – стабилизация на уровне 0,4%;
Испания – увеличение от 0,4 до 1,4 %;
Кувейт – стабилизация на уровне 2,1 %;
Малайзия – увеличение от 5,5 до 16,7 %;
Новая Зеландия – стабилизация на уровне 12,5 %;
Реюньон – увеличение от 2,9 до 30,2 %;
Руанда – стабилизация на уровне 10,2 %;
США – уменьшение от 0.1до 0.008 %;
Чехия - уменьшение от 1,3 до 0 %;
Франция – увеличение от 2,2 до 3,4 %;
Швеция – стабилизация на уровне 0,5 %;
Швейцария – стабилизация на уровне 0,7 %;
ЮАР – уменьшение от 10,9 до 7,7 %;
Япония – стабилизация на уровне 2,3 %.
```

Согласно представленным данным, в странах мира на анализируемой неделе наблюдается увеличение, уменьшение и стабилизация процентной доли вариантов депонированных геномов, относящихся к линии 501Y.V2.

Вариант Р.1 (линия В.1.1.28), Gamma.

С 1 ноября 2020 года в базе GISAID представлено 52 305 геномов вируса SARS-CoV-2 варианта Р.1 Gamma. За последнюю неделю в базу данных было депонировано еще 3 278 геномов данного варианта вируса (на предыдущей неделе 3 675).

В базе данных GISAID на 16 июля циркуляция геноварианта Gamma зафиксирована в 61 стране и территории: Аргентина, Аруба, Австралия, Австрия, Бангладеш, Барбадос, Бразилия, Бельгия, Боливия, Великобритания, Венесуэла, Гаити, Германия, Гвиана, Гуам, Дания, Доминиканская Республика, Израиль, Италия, Ирландия, Испания, Иордания, Канада, Каймановы острова, Колумбия, Коста-Рика, Китай, Кюрасао, Литва, Люксембург, Мальта, Мексика, Нидерланды, Норвегия, Новая Зеландия, Парагвай, Перу, Португалия, Польша, Румыния, Словения, Сингапур, Суринам, США, Тайвань, Тринидад и Тобаго, Турция, Уругвай, Фарерские острова, Филиппины, Финляндия, Франция, Французская Гвиана, Чили, Чехия, Хорватия, Швейцария, Швеция, Эквадор, Южная Корея, Япония.

За последние 4 недели в абсолютных значениях наибольшее число геномов варианта Gamma депонировали США (898), Чили (297), Мексика (275).

Информация по числу депонированных геномов варианта Gamma обновилась из следующих стран:

```
Аргентина – увеличение от 0 до 53,3 %;
Аруба – уменьшение от 64,9 до 39,1 %;
Бельгия – уменьшение от 4,8 до 2,8 %;
Бразилия – уменьшение от 53,8 до 40,3 %;
Великобритания – стабилизация на уровне 0,006 %;
Германия – стабилизация на уровне 1,4%;
Дания – стабилизация на уровне 0,3 %
Италия – увеличение от 3,4 до 4,1 %;
Испания – стабилизация на уровне 3,9 %;
Каймановы острова - уменьшение от 100,0 до 50,0 % (мало данных);
Мексика – увеличение от 9,8 до 19,2 %;
Нидерланды – стабилизация на уровне 0,7 %;
Польша – уменьшение от 1,2 до 0,6 %;
Португалия – стабилизация на уровне 0,5 %;
США – уменьшение от 8,5 до 1,1 %;
Франция – увеличение от 0,8 до 5,5 %;
Французская Гвиана – увеличение от 68,4 до 75 %;
Швеция – стабилизация на уровне 0,3%;
Швейцария – стабилизировалась на уровне 1,6%;
Чили - увеличение от 40,0 до 58,9 %;
Эквадор – стабилизировалась на уровне 6,8 %.
```

Согласно представленным данным в большинстве стран на анализируемой неделе наблюдается стабилизация или уменьшение доли вариантов Gamma, депонированных в базу данных GISAID.

Вариант Delta (В.1.617.2)

С декабря 2020 года в базе данных GISAID представлено 197 188 геномов вируса SARS-CoV-2 варианта **Delta.** За последнюю неделю в базу данных было депонировано ещё 49 769 геномов данного варианта вируса (за предыдущую неделю 37 449). За прошедшую неделю в базу данных были депонированы геномы варианта Delta B.1.617.2 из 11 новых стран.

На сегодняшний день в базе данных GISAID зафиксировано депонирование варианта **Delta** из 100 стран и территорий: Австралия, Австрия, Ангилья, Ангола, Аргентина, Аруба, Бангладеш, Барбадос, Бахрейн, Бельгия, Болгария, Босния и Герцеговина, Ботсвана, Бразилия, Бурундия, Великобритания, Вьетнам, Гана, Гамбия, Гваделупа, Германия, Греция, Грузия, Гуам, Дания, ДРК, Замбия, Израиль, Индия, Индонезия, Иордания, Иран, Ирландия, Испания, Италия, Камбоджа, Канада, Катар, Китай, Кения, Косово, Кувейт, Латвия, Литва, Ливан, Люксембург, Маврикий, Малайзия, Малави, Мальта, Марокко, Мексика, Мьянма, Монако, Непал, Нигерия, Нидерланды, Новая Зеландия, Норвегия, Пакистан, Перу, Польша, Португалия, Реюньон, Россия, Румыния, Руанда, Республика Конго, Сенегал, Сингапур, Синт-Мартен, Северная Македония, Сербия, Словакия, Словения, США, Таиланд, Тайвань, Турция, Украина, Уганда, Филиппины, Финляндия, Франция,

Французская Гвиана, Хорватия, Чешская Республика, Чили, Швейцария, Швеция, Шри-Ланка, Эквадор, Южная Корея, ЮАР, Япония.

За последние 4 недели в абсолютных значениях наибольшее число геномов варианта **Delta** депонировали Великобритания (64 421), США (7 593) и Дания (2 613).

В большинстве стран на анализируемой неделе наблюдается увеличение доли вариантов вируса **Delta**, геномы которых депонированы в базе GISAID, к общему количеству выделенных штаммов.

На 16 июля 2021 года информация по числу депонированных геномов варианта **Delta** обновилась из следующих стран:

```
Австралия – стабилизация на уровне 84,3%;
Австрия – уменьшение от 48,7 до 38,1 %;
Бангладеш – уменьшение от 79,8 до 55,4 %;
Бахрейн – увеличение от 0 до 95,2 %;
Бельгия – увеличение от 22,1 до 51,6 %;
Ботсвана – стабилизация на уровне 56,9 %;
Бразилия – увеличение от 0,7 до 2,7 %;
Великобритания – увеличение от 86,2 до 90,1%;
Дания – увеличение от 39,2 до 77,7 %;
Германия – увеличение от 23,7 до 41,9 %;
Гана – увеличение от 9,1 до 33,3 %;
Гваделупа – стабилизация на уровне 12,5%;
Индия – стабилизация на уровне 67,2 %;
Индонезия – стабилизация на уровне 78,1 %;
Ирландия – увеличение от 21,9 до 49,1 %;
Израиль – стабилизация на уровне 98,4%;
Испания – увеличение от 35,2 до 47,8 %;
Италия – увеличение от 26,0 до 38,2 %;
Камбоджа – стабилизация на уровне 26,0%;
Китай – стабилизация на уровне 95,4 %;
Кувейт – увеличение от 40.9 до 66.6 %;
Малайзия – стабилизация на уровне 54,2%;
Мальта – увеличение от 22,2 до 62,5 %;
Мексика – стабилизация на уровне 36,5%;
Нидерланды – увеличение от 15,4 до 28,9 %;
Новая Зеландия – стабилизация на уровне 50,0 %;
Норвегия – увеличение от 21,8 до 33,6 %;
Польша – увеличение от 5,2 до 25,9 %;
Португалия – увеличение от 66,9 до 76,0 %;
Румыния – увеличение от 17,6 до 50,0 %;
Россия – уменьшение от 50,3 до 19,6 %;
Сингапур – уменьшение от 93,1 до 75,7 %;
Словакия – увеличение от 1,7 до 13,2 %;
США – уменьшение от 36,1 до 9,4\%;
```

Таиланд – увеличение от 32,5 до 41,5 %; Франция – увеличение от 14,3 до 40,4 %; Чехия – увеличение от 13,3 до 36,3%; Швеция – стабилизация на уровне 28,9 %; Швейцария – увеличение от 19,9 до 41,3 %; Шри-Ланка – уменьшение от 10,8 до 7,7 %; ЮАР – увеличение от 52,5 до 64,4 %; Япония – увеличение от 40,1 до 47,7 %.

Варианты вируса SARS-CoV-2 вызывающие интерес (VOI)

В мире получили распространение другие варианты вируса SARS-COV-2, имеющие характерные мутации: вариант **Epsilon** (**B.1.427/B.1.429**), **Eta** (**B.1.525**), **Theta** GR/1092K.V1 (**P.3**), **Iota** GH/253G.V1 (**B.1.526**), **Kappa** G/452R.V3 (**B.1.617.1**), **Lambda** GR/452Q.V1 (**C.37**).

Информация по данным о депонированных геномах вируса VOI SARS-COV-2: Epsilon (B.1.427/B.1.429) и Eta (B.1.525) Theta (P.3), Iota (B.1.526), Карра (B.1.617.1), Lambda (C.37) приведена в Приложении 1 таблице 2.

Вариант Epsilon GH/452R.V1 (В.1.427/В.1.429)

С 1 июля 2020 года в базе данных GISAID представлено 55 342 генома вируса SARS-CoV-2 варианта VOI Epsilon GH/452R.V1 (В.1.427/В.1.429). За последнюю неделю в базу данных было депонировано еще 3374 гена данного варианта вируса.

На сегодняшний день в базе данных GISAID зафиксировано депонирование варианта **Epsilon** (**B.1.427/B.1.429**) из 46 стран и территорий: Австралия, Ангилья, Антигуа и Барбуда, Аруба, Аргентина, Барбадос, Бельгия, Британские Виргинские острова, Великобритания, Германия, Гваделупа, Гуам, Гватемала, Дания, Доминиканская Республика, Израиль, Индия, Ирландия, Италия, Испания, Камбоджа, Камерун, Канада, Колумбия, Коста-Рика, Кюрасао, Мексика, Нидерланды, Новая Зеландия, Норвегия, Перу, Северная Македония, Северные Марианские острова, Сингапур, США, Синт-Мартен, Тайвань, Теркс и Кайкос, Турция, Финляндия, Франция, Швейцария, Швеция, Чили, Южная Корея, Япония.

За последние 4 недели в абсолютных значениях наибольшее число геномов варианта **Epsilon** депонировали США (25).

На 16 июля 2021 года информация по числу депонированных геномов варианта **Epsilon (В.1.429/В.1.427)** обновилась из четырех стран:

Великобритания – увеличение от 0 до 0,001 %;

Канада – увеличение от 0 до 0,2 %;

Мексика – уменьшение от 1,6 до 0,2 %;

США – уменьшение 0,4 до 0,03 %.

Наблюдается стабилизация доли вариантов вируса **Epsilon**, геномы которых депонированы в базе GISAID, к общему количеству депонированных на неделе штаммов.

Вариант VOI Eta G/484K.V3 (В.1.525)

С декабря 2020 года в базе данных GISAID представлено 7 561 генома вируса SARS-CoV-2 варианта **Eta** (**B.1.525**). За последнюю неделю в базу данных было депонирован еще 327 геном данного варианта вируса (на предыдущей неделе 124).

На сегодняшний день в базе данных GISAID зафиксировано депонирование варианта **Eta** из 70 стран и территорий: Австралия, Австрия, Ангола, Аргентина, Бангладеш, Беларусь, Бельгия, Бенин, Бразилия, Великобритания, Габон, Гамбия, Гана, Гваделупа, Гвинея, Германия, Греция, Дания, Израиль, Индия, Индонезия, Иордания, Ирландия, Испания, Италия, Канада, Катар, Камерун, Кения, Коста-Рика, Кот-д'Ивуар, Кувейта, Латвия, Ливия, Люксембург, Литва, Майотта, Малайзия, Мали, Мальта, Марокко, Нигер, Нигерия, Нидерланды, Норвегия, Польша, Португалия, Реюньон, Россия, Руанда, Сингапур, Сенегал, Словения, США, Таиланд, Тунис, Турция, Уганда, Финляндия, Филиппины, Франция, Швеция, Швейцария, Шри-Ланка, Эстония, Южная Корея, ЮАР, Южный Судан, Япония.

За последние 4 недели в абсолютных значениях наибольшее число геномов варианта **Eta** (**B.1.525**) депонировала Канада (86). В странах мира наблюдается снижение и стабилизация доли вариантов вируса **Eta** геномы которых депонированы в базе GISAID, к общему количеству депонированных на неделе штаммов

На 16 июля 2021 года информация по числу депонированных геномов варианта **Eta** обновилась из следующих стран:

Бельгия – увеличение от 0 до 0,06%;

Великобритания – стабилизация на уровне 0,01%;

Германия – стабилизация на уровне 0,4 %;

Гана – увеличение от 9,1 до 33,3% (мало данных);

Италия – уменьшение от 1,2 до 0,4 %;

Испания – стабилизация на уровне 0,3%;

Нидерланды – стабилизация на уровне 0,2% (мало данных);

Португалия – стабилизация на уровне 0,08 %;

США – стабилизация на уровне 0,01%;

Франция – стабилизация на уровне 0,6%.

Bapuaнт VOI Theta GR/1092K.V1 (Р.3)

По состоянию на 16 июля 2021года в базе данных GISAID представлено 294 геномов варианта Theta (Р.3). За последнюю неделю в базу данных было депонировано еще 7 геномов данного варианта вируса.

В итоге в базе данных GISAID зафиксировано депонирование варианта Theta (Р.3) из 16 стран: Австралия, Ангола, Бельгия, Великобритания, Германия, Канада, Китай, Малайзия, Нидерланды, Новая Зеландия, Норвегия, Сингапур, США, Филиппины, Южная Корея, Япония.

Вариант VOI Iota GH/253G.V1 (В.1.526)

По состоянию на 16 июля 2021года в базе данных GISAID представлено 47 520 геномов варианта Іота (В.1.526). За последнюю неделю в базу данных было депонировано еще 933 генома данного варианта вируса (на предыдущей неделе 1 224).

В абсолютных значениях наибольшее число геномов данного варианта депонировали США (302).

В итоге в базе данных GISAID зафиксировано депонирование варианта Iota (В.1.526) из 54 стран и территорий: Ангилья, Аргентина, Аруба, Австралия, Австрия, Антигуа и Барбуда, Бельгия, Британские Виргинские острова, Великобритания, Венесуэла, Гана, Германия, Гваделупа, Гренада, Дания, Доминиканская Республика, Индия, Индонезия, Ирландия, Италия, Израиль, Испания, Канада, Каймановы острова, Китай, Колумбия, Коста-Рика, Кюрасао, Литва, Люксембург, Мексика, Нидерланды, Новая Зеландия, Перу, Польша, Португалия, Россия, Румыния, Сен-Мартен, Словения, Сингапур, Суринам, США, Турция, Теркс и Кайкос, Чили, Швеция, Швейцария, Хорватия, Эквадор, Финляндия, Франция, Южная Корея, Ямайка, Япония.

Вариант VOI Карра G/452R.V3 (В.1.617.1)

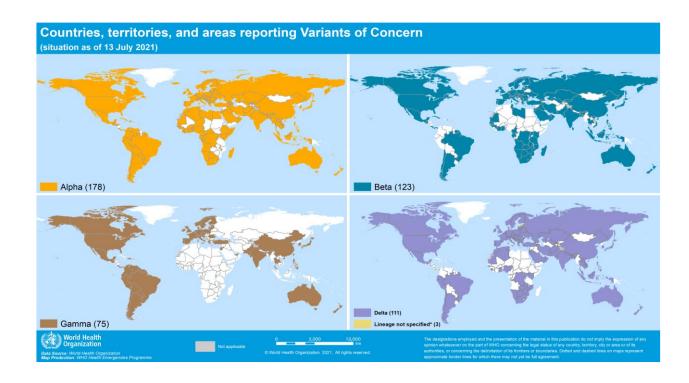
По состоянию на 16 июля 2021года в базе данных GISAID представлено 6033 геном варианта Карра (В.1.617.1). За последнюю неделю в базу данных был депонирован еще 508 геномов данного варианта вируса (на предыдущей неделе 97). В абсолютных значениях наибольшее число геномов данного варианта депонировала Индия (4235).

В итоге в базе данных GISAID зафиксировано депонирование варианта Карра (В.1.617.1) из 52 стран и территорий: Ангола, Австралия, Австрия, Бахрейн, Бангладеш, Бельгия, Ботсвана, Бразилия, Великобритания, Германия, Гана, Греция, Гваделупа, Дания, Камбоджа, Канада, Катар, Китай, Кюрасао, Индия, Индонезия, Ирландия, Италия, Иордания, Испания, Люксембург, Марокко, Малави, Малайзия, Маврикий, Мексика, Непал, Нидерланды, Новая Зеландия, Норвегия, Португалия, Россия, Сингапур, Сен-Мартен, Словакия, Словения, США, Таиланд, Финляндия, Франция, Чехия, Швеция, Швейцария, Уганда, ЮАР, Южная Корея, Япония.

Bapuaнт VOI Lambda GR/452Q.V1 (С.37)

По состоянию на 16 июля 2021 года в базе данных GISAID представлено 2 895 геномов варианта Lambda (С.37). За последнюю неделю в базу данных было депонировано еще 520 геномов данного варианта вируса (на предыдущей неделе 196). В абсолютных значениях наибольшее число геномов данного варианта депонировали Чили (1022), США (705) и Перу (571).

В итоге в базе данных GISAID зафиксировано депонирование варианта Lambda (С.37) из 29 стран и территорий: Аруба, Аргентина, Австралия, Бразилия, Бельгия, Боливия, Дания, Великобритания, Германия, Италия, Израиль, Испания, Кюрасао, Канада, Колумбия, Мексика, Нидерланды, Перу, Польша, Португалия, Сент-Китс и Невис, США, Турция, Уругвай, Франция, Швейцария, Чили, Чехия, Эквадор.


Сообщение ВОЗ от 13.07.2021 г.

Особое внимание: обновленная информация о вариантах SARS-CoV-2, представляющих интерес, и вариантах, вызывающих озабоченность

ВОЗ в сотрудничестве с национальными властями, учреждениями и исследователями регулярно оценивает, изменяют ли варианты SARS-CoV-2 характерные признаки трансмиссивности или клинического течения болезни, или влияют ли на эффективность вакцин, лечения, средств диагностики или мер общественного здравоохранения и социальных мер (PHSM), применяемых национальными властями для контроля распространения болезни. «Сигналы» о потенциальных вариантах, вызывающих озабоченность (VOC) или вариантах, вызывающих интерес (VOI), выявляются и оцениваются на основе риска, представляемого для здоровья населения во всем мире. По мере возникновения этих рисков ВОЗ будет продолжать обновлять списки глобальных VOC и VOI, чтобы поддерживать установление приоритетов для эпиднадзора и исследований и, в конечном итоге, направлять стратегии реагирования.

По мере усиления деятельности по надзору для выявления вариантов SARS-CoV-2 на местном и национальном уровнях, в том числе путем стратегического геномного секвенирования, количество стран / территорий / регионов, сообщающих о VOC, продолжает расти (Рисунок 1, Приложение 2).

Рисунок 1. Страны, территории и регионы, сообщающие о вариантах Alpha, Beta, Gamma и Delta, по состоянию на 13 июля 2021 г.

Это распределение следует интерпретировать с должным учетом ограничений эпиднадзора, включая различия в возможностях проведения секвенирования и стратегиях отбора проб между странами. Тем не менее, общий рост случаев COVID-19 вызванных вариантом Дельта зарегистрирован во всех регионах ВОЗ. По состоянию на 13 июля, по крайней мере, 111 стран, территорий и регионов сообщили об обнаружении варианта Дельта, и ожидается, что это число будет продолжать расти, и в ближайшие месяцы он станет доминирующим вариантом во всем мире. Повышенная трансмиссивность, связанная с вариантом Delta, вероятно, приведет к значительному увеличению заболеваемости и большему давлению на системы здравоохранения, особенно в условиях низкого охвата вакцинацией. По мере того, как страны постепенно возобновляют несущественные международные поездки, введение мер по снижению рисков, направленных на сокращение экспорта, импорта и дальнейшей передачи SARS-CoV-2, связанных с поездками, должно основываться на тщательной оценке рисков, проводимой систематически и регулярно.

Научные публикации

Препринт medRxiv doi: https://doi.org/10.1101/2021.06.21.21259286; версия опубликована 22 июня 2021 г.

Predicting the mutational drivers of future SARS-CoV-2 variants of concern

Прогнозирование мутационных драйверов будущих вариантов SARS-CoV-2, вызывающих озабоченность

M. Cyrus Maher, Istvan Bartha, Steven Weaver, Julia di Iulio, Elena Ferri, Leah Soriaga, Florian A. Lempp, Brian L. Hie, Bryan Bryson, Bonnie Berger, David L. Robertson, Gyorgy Snell1, Davide Corti1, Herbert W. Virgin1, Sergei L. Kosakovsky Pond, Amalio Telenti

DOI: 10.1101/2021.06.21.21259286

Эволюция SARS-CoV-2 угрожает иммунитету, сформировавшемуся после и естественной инфекции, а также эффективности терапевтических антител. Здесь мы стремились предсказать изменения аминокислот шиповидного белка, которые могут повлиять на будущие варианты, вызывающие озабоченность. Мы проверили важность характеристик, включающих эпидемиологию, эволюцию, иммунологию и моделирование последовательности белков на основе нейронных сетей. Это привело к идентификации основных биологических драйверов внутрипандемической эволюции SARS-CoV-2. Мы обнаружили доказательства того, что устойчивость к иммунитету хозяина на популяционном уровне все больше влияет на эволюцию SARS-CoV-2 с течением времени. Мы с высокой точностью определили мутации, которые будут распространяться не позднее, чем за четыре месяца до в различные фазы модели соответствовало вероятной Поведение следственной структуре, в которой эпидемиологические переменные объединяли эффекты различных и меняющихся факторов вирусной приспособленности. Мы применили нашу модель для прогнозирования мутаций, которые будут распространяться в будущем, и описываем, как эти мутации влияют на связывание терапевтических антител. Эти результаты показывают, что можно спрогнозировать драйверные мутации, которые могут появиться в новых вызывающих озабоченность вариантах SARS-CoV-2. Этот подход к моделированию может быть применен к любому патогену с данными геномного надзора и, таким образом, может воздействовать на другие быстро развивающиеся патогены, такие как грипп и неизвестные будущие способные вызвать пандемию вирусы.

J Virol. 2021 Jul 12;95(15):e0049621. doi: 10.1128/JVI.00496-21. Epub 2021 Jul 12.

Genome-Wide Variation in Betacoronaviruses

Изменчивость бета-коронавирусов по всему геному

Katherine LaTourrette , Natalie M Holste , Rosalba Rodriguez-Реña и др.

Affiliations expand

DOI: 10.1128/JVI.00496-21

Коронавирус тяжелого острого респираторного синдрома (SARS-CoV) и SARS-CoV-2 возник у летучих мышей и адаптирован для заражения людей. Было идентифицировано несколько штаммов SARS-CoV-2. Генетическая изменчивость имеет фундаментальное значение для эволюции вируса и в ответ

на давление отбора проявляется в появлении новых штаммов и видов, адаптированных к различным хозяевам или с новой патогенностью. Комбинация вариаций и отбора формирует генетический след в геноме, состоящий из преимущественного накопления мутаций в определенных областях. Свойства бета-коронавирусов, способствующие изменчивости и появлению новых штаммов и видов, начинают выясняться. Чтобы лучше понять их вариабельность, мы профилировали накопление мутаций у всех видов рода Betacoronavirus, включая SARS-CoV-2 и два других вида, которые инфицируют людей: SARS-CoV и коронавирус ближневосточного респираторного синдрома (MERS-CoV). Профили изменчивости идентифицировали как генетически стабильные, так и вариабельные области в гомологичных местах у разных видов в пределах рода Betacoronavirus. Гликопротеин S является наиболее изменчивой частью генома и структурно неупорядочен. Другие вариабельные части включают белки 3 и 7 и ORF8, которые участвуют в репликации и подавлении противовирусной защиты. Напротив, белки репликации в ORF1b наименее вариабельны. В совокупности наши результаты показывают, что вариабельность и структурные нарушения в гликопротеине S являются общей чертой всех представителей рода Betacoronavirus, включая SARS-CoV-2. Эти результаты подчеркивают возможность постоянного появления новых видов и штаммов с новыми биологическими свойствами и указывают на то, что гликопротеин S играет решающую роль в адаптации хозяина. Важно, что естественное инфицирование SARS-CoV-2, а также вакцинация вызывают образование антител против гликопротеина S, которые выявляются диагностическими тестами на основе антител. Наш анализ показал, что вариабельность гликопротеина S является общей характеристикой всех видов рода Веtacoronavirus, включая три вида, которые инфицируют людей: SARS-CoV, SARS-CoV-2 и MERS-CoV. Изменчивая природа гликопротеина S объясняет появление SARS-CoV-2, дифференциацию SARS-CoV-2 на штаммы и вероятность повторных инфекций SARS-CoV-2 у людей. Вариация гликопротеина S также имеет важное значение для надежности диагностических тестов на основе антител против SARS-CoV-2, а также для разработки и внедрения вакцин и противовирусных препаратов. Эти результаты показывают, что для учета вариабельности S-гликопротеина необходимы корректировки в разработке и применении вакцины, а также в диагностических тестах на основе антител.

PLoS Comput Biol. 2021 Jul 8;17(7):e1009147. doi: 10.1371/journal.pcbi.1009147. Online ahead of print.

The interplay of SARS-CoV-2 evolution and constraints imposed by the structure and functionality of its proteins.

Взаимодействие эволюции SARS-CoV-2 и ограничения, налагаемые структурой и функциональностью его белков

Lukasz Jaroszewski, Mallika Iyer, Arghavan Alisoltani, Mayya Sedova, Adam Godzik.

DOI: 10.1371/journal.pcbi.1009147

Беспрецедентные темпы секвенирования геномов вируса SARS-CoV-2 предоставляют нам уникальную информацию о генетических изменениях одного патогена во время продолжающейся пандемии. Путем анализа около 200000 геномов мы показываем, что характер мутаций в геноме вируса SARS-CoV-2 тесно коррелирует со структурными и функциональными особенностями кодируемых белков. Требования гибкости трехмерных структур белков и сохранения их ключевых функциональных областей, таких как интерфейсы межбелкового взаимодействия, являются доминирующими факторами, управляющими эволюционным отбором в генах, кодирующих белок. В то же время уклонение от иммунитета хозяина приводит к обилию мутаций в других регионах, что приводит к высокой вариабельности миссенс-мутаций по всему геному. «Необъяснимые» пики и спады в частоте мутаций дают представление о функциях еще не охарактеризованных участков генома и конкретных структурных и функциональных особенностях белков, которые они кодируют. Некоторые из этих наблюдений имеют непосредственное практическое значение для выбора областей-мишеней для тестов на COVID-19 на основе ПЦР и для оценки риска мутаций в эпитопах, на которые нацелены специфические антитела, и стратегии разработки вакцины.

Sci Rep. 2021 Jul 7;11(1):13971. doi: 10.1038/s41598-021-92851-3.

Genomic epidemiology of SARS-CoV-2 in the UAE reveals novel virus mutation, patterns of co-infection and tissue specific host immune response.

Геномная эпидемиология SARS-CoV-2 в ОАЭ выявила новую вирусную мутацию, паттерны коинфекции и тканеспецифический иммунный ответ хозяина

Rong Liu, Pei Wu, Pauline Ogrodzki, Sally Mahmoud, Ke Liang, Pengjuan Liu, Stephen S Francis, Hanif Khalak, Denghui Liu, Junhua Li, Tao Ma, Fang Chen, Weibin Liu, Xinyu Huang, Wenjun He, Zhaorong Yuan, Nan Qiao, Xin Meng, Budoor Alqarni, Javier Quilez, Vinay Kusuma, Long Lin, Xin Jin, Chongguang Yang, Xavier Anton, Ashish Koshy, Huanming Yang, Xun Xu, Jian Wang, Peng Xiao, Nawal Al Kaabi, Mohammed Saifuddin Fasihuddin, Francis Amirtharaj Selvaraj, Stefan Weber, Farida Ismail Al Hosani, Siyang Liu, Walid Abbas Zaher.

DOI: 10.1038/s41598-021-92851-3

Чтобы выяснить источник появления SARS-CoV-2 и характер его распространения, а также эволюции в Объединенных Арабских Эмиратах, мы провели секвенирование мета-транскриптома 1067 образцов мазков из носоглотки, собранных в период с 9 мая по 29 июня 2020 года во время первого пика роста местной эпидемии COVID-19. Мы определили глобальное распространение клад и одиннадцать новых генетических вариантов, которые почти отсутствовали в остальном мире и которые определили пять субкладов, специфичных для вирусной популяции ОАЭ. Передача от человека к человеку между поселениями была связана с местной деловой деятельностью. Удивительно, что по меньшей мере 5% населения были инфицированы

SARS-CoV-2 из нескольких клад в пределах одного и того же хозяина. Мы также обнаружили увеличение количества мутации цитозин-урацил среди вирусной популяции, собранной из носоглотки, что отличается от изменения аденозина-инозин, о котором ранее сообщалось в образцах жидкости брон-хоальвеолярного лаважа, и ранее не идентифицированной повышающей регуляции экспрессии APOBEC4 в носоглотке среди инфицированных пациентов, что указывает на то, что врожденный иммунный ответ хозяина, опосредованный семействами генов ADAR и APOBEC, может быть тканеспецифичным. Представленные здесь данные о геномной эпидемиологии и молекулярной биологии позволяют по-новому взглянуть на эволюцию и передачу SARS-CoV-2 и указывают на будущее направление исследования взаимодействия между хозяином и патогеном.

bioRxiv preprint https://doi.org/10.1101/2021.07.15.452488; this version posted July 15, 2021

Monitoring the spread of SARS-CoV-2 variants in Moscow and the Moscow region using targeted high-throughput sequencing

Мониторинг распространения вариантов SARS-CoV-2 в Москве и Московской области с использованием целевого высокопроизводительного секвенирования

Nadezhda I Borisova, View ORCID ProfileIvan A Kotov, Anton A Kolesnikov, View ORCID ProfileValeriia V Kaptelova, View ORCID ProfileAnna S Speranskaya, Larisa Yu Kondrasheva, View ORCID ProfileElena V Tivanova, View ORCID ProfileKamil Khafizov, View ORCID ProfileVasily G Akimkin

DOI: 10.1101/2021.07.15.452488

С момента вспышки пандемии COVID-19, вызванной коронавирусом SARS-CoV-2, международное сообщество обеспокоено появлением мутаций, которые изменяют биологические свойства патогена, например, повышают его инфекционность или вирулентность. В частности, с конца 2020 года в мире было выявлено несколько вызывающих озабоченность вариантов, включая варианты альфа (В.1.1.7, британский), бета (В.1.351, южноафриканский), гамма (Р.1, бразильский) и дельта (В.1.617.2, индийский). Однако существующий механизм поиска важных мутаций и идентификации штаммов может быть недостаточно эффективным, поскольку только относительно небольшая часть всех идентифицированных образцов патогенов может быть исследована на генетические изменения путем секвенирования всего генома из-за его высокой стоимости. В данном исследовании мы использовали метод целевого высокопроизводительного секвенирования наиболее значимых участков гена, кодирующего S-гликопротеин вируса SARS-CoV-2, для которого была разработана панель праймеров. С помощью данной методики изучено 579 случайных выборок, полученных от больных коронавирусной инфекцией в Москве и Московской области с февраля по июнь 2021 года. Исследование продемонстрировало динамику представленности в Московской

области ряда штаммов SARS-CoV-2 и его наиболее значимые индивидуальные мутации в период с февраля по июнь 2021 г. Выявлено, что штамм В.1.617.2 начал быстро распространяться в Москве и Подмосковье в мае, а в июне стал доминирующим, частично вытеснив другие штаммы вируса. Полученные результаты позволяют точно определить принадлежность образцов к указанным выше и некоторым другим штаммам. Подход может быть использован для стандартизации процедуры поиска новых и существующих эпидемиологически значимых мутаций в определенных регионах генома SARS-CoV-2, что позволяет в короткие сроки изучить большое количество образцов и получить более детальную картину эпидемиологической ситуации в регионе.

bioRxiv preprint https://doi.org/10.1101/2021.07.14.452381 this version posted July 15, 2021

Single cell profiling of T and B cell repertoires following SARS-CoV-2 mRNA vaccine

Профилирование отдельных Т- и В-клеток после применения мРНК вакцины против SARS-CoV-2

DOI:10.1101/2021.07.14.452381

Suhas Sureshchandra, Sloan A. Lewis, Brianna Doratt, Allen Jankeel1, Izabela Ibraim1, Ilhem Messaoudi

Вакцины на основе мРНК против SARS-CoV-2 продемонстрировали исключительную клиническую эффективность, обеспечивая надежную защиту от тяжелого заболевания. Однако наше понимание изменений транскрипции после полной вакцинации остается неполным. Мы использовали секвенирование одноклеточной РНК и функциональные анализы для сравнения гуморальных и клеточных ответов на две дозы мРНК-вакцины с ответами, наблюдаемыми у выздоравливающих людей с бессимптомным заболеванием. Наши анализы выявили обогащение спайк-специфических В-клеток, активированных CD4 Т-клеток и устойчивые антиген-специфические полифункциональные Т-клеточные ответы CD4 у всех вакцинированных. С другой стороны, ответы Т-лимфоцитов CD8 были как слабыми, так и вариабельными. Интересно, что клонально увеличенные CD8 Т-клетки наблюдались у каждого вакцинированного, как это наблюдалось после естественного заражения. Однако использование гена TCR было различным, что отражало разнообразие и полиморфизм главного комплекса гистосовместимости (МНС) в человеческой популяции. Вызванная естественной инфекцией экспансия более крупных клонов CD8 Т-клеток занимала отдельные кластеры, вероятно, из-за распознавания более широкого набора вирусных эпитопов, представленных вирусом, не обнаруженных в мРНК-вакцине. Наше исследование подчеркивает скоординированный адаптивный иммунный ответ, при котором ранние Т-клеточные ответы CD4 способствуют развитию В-клеточного ответа и значительному увеличению эффекторных Т-лимфоцитов CD8.

J Med Virol. 2021 Jul 14. doi: 10.1002/jmv.27210. Online ahead of print.

SARS-CoV-2 B.1.617 Indian variants: are electrostatic potential changes responsible for a higher transmission rate?

SARS-CoV-2 B.1.617 Индийские варианты: ответственны ли изменения электростатического потенциала за более высокую скорость передачи?

Stefano Pascarella, Massimo Ciccozzi, Davide Zella, Martina Bianchi, View ORCID ProfileFrancesca Benetti, Francesco Broccolo, Roberto Cauda, Arnaldo Caruso, Silvia Angeletti, Marta Giovanetti, Antonio Cassone

DOI: 10.1002/jmv.27210

Линия B.1.617 +, также известная как G / 452R.V3 и теперь обозначаемая ВОЗ греческими буквами δ и к, представляет собой недавно описанный исследуемый вариант SARS-CoV-2 (VUI), впервые выявленный в октябре 2020 года в Индии. По состоянию на май 2021 года уже идентифицированы три подветвия, обозначенные как B.1.617.1 (к), B.1.617.2 ((б) и B.1.617.3, потенциальное влияние которых на текущую пандемию изучается. Этот вариант имеет 13 аминокислотных изменений, три в его шиповом белке, которые в настоящее время вызывают особую озабоченность: E484Q, L452R и P681R. Здесь мы сообщаем об основном эффекте мутаций, характеризующих эту линию, представленном заметным изменением поверхностного электростатического потенциала (EP) рецепторсвязывающего домена (RBD) шипового белка. Особенно этот эффекты заметен в сублинии В.1.617.2 ((δ)), которая демонстрирует множественные замены нейтральных или отрицательно заряженных аминокислот на положительно заряженные аминокислоты. Мы предполагаем, что это изменение электростатического потенциала может способствовать взаимодействию между RBD B.1.617 + и отрицательно заряженным АСЕ2, таким образом обеспечивая потенциальное увеличение передачи вируса.

J Med Virol. 2021 Jul 13. doi: 10.1002/jmv.27196. Online ahead of print.

The variants question: what is the problem?

Вопрос о вариантах: в чем проблема?

Zella D, Giovanetti M, Benedetti F, Unali F, Spoto S, Guarino

M, Angeletti S, Ciccozzi M.

DOI: 10.1002/jmv.27196

Тяжелый острый респираторный синдром коронавируса 2 (SARS-CoV-2), возникший в начале декабря 2019 года в Ухане (Китай), быстро распространился по всему миру. В ходе пандемии благодаря развитию технологий секвенирования всего генома было создано беспрецедентное количество геномов, что дает неоценимую информацию о продолжающейся эволюции и эпидемиологии вируса, а также позволяет идентифицировать сотни циркули-

рующих генетических вариантов во время пандемия. В последние месяцы варианты SARS-CoV-2, которые имеют повышенное количество мутаций в S белке, вызвали беспокойство во всем мире. Их назвали «вызывающими озабоченность вариантами» (VOC) и / или «представляющими интерес вариантами» (VOI), поскольку предполагалось, что их геномные мутации могут влиять на передачу, иммунный контроль и вирулентность. Отслеживание распространения новых вариантов SARS-CoV-2 имеет решающее значение для информирования усилий общественного здравоохранения и контроля над продолжающейся пандемией. В этом обзоре представлена краткая характеристика мутационных паттернов SARS-CoV-2 основных VOC и VOI, циркулирующих по всему миру, чтобы определить масштабы угрозы SARS-CoV-2. Что, в свою очередь, поможет пониманию генетического разнообразия вируса и его потенциальное влияние на стратегию вакцинации.

Crit Care. 2021 Jul 12;25(1):244. doi: 10.1186/s13054-021-03662-x.

Emerging SARS-CoV-2 variants of concern and potential intervention approaches

Новые вызывающие беспокойство варианты SARS-CoV-2 и возможные подходы к вмешательству

Khateeb J, Li Y, Zhang H.

DOI: 10.1186/s13054-021-03662-x.

Варианты, вызывающие обеспокоенность (VOCs) связаны общими белковыми мутациями, преимущественно в блоке S1, что приводит к более высокой скорости передачи, а также влияет на вирулентность вируса и клинический исход. Спайковые мутации белков и другие неструктурные мутации белков в новых вариантах SARS-CoV-2 могут в определенной степени привести к отказу от одобренных вакцинаций. Мы обсудим эти мутации и необходимость комбинированных терапевтических стратегий, направленных на вирусный цикл и иммунные реакции хозяина.

J Infect Dis. 2021 Jul 14:jiab368. doi: 10.1093/infdis/jiab368. Online ahead of

print.

SARS-CoV-2 B.1.617 mutations L452 and E484Q are not synergistic for antibody evasion

SARS-CoV-2 B.1.617 мутации L452 и E484Q не являются синергичными для уклонения от антител

Ferreira I, Kemp S, Datir R, Saito A, Meng B, Rakshit P, Takaori-Kondo A, Kosugi Y, Uriu K, Kimura I, Shirakawa K, Abdullahi A и др.

DOI: 10.1093/infdis/jiab368

Вариант SARS-CoV-2 В.1.617 появился в индийском штате Махараштра в конце 2020 года. Были опасения, что две ключевые мутации, обнаруженные в рецепторсвязывающем домене L452R и E484Q, будут иметь аддитивный эффект на уклонение от нейтрализующих антител. Мы сообщаем, что

спайк, несущий L452R и E484Q, дает умеренно пониженную чувствительность к антителам, вызванными вакциной мРНК BNT162b2, после первой или второй дозы. Эффект аналогичен по величине потере чувствительности, присущей только L452R или E484Q. Это указывает на пониженную чувствительность к вакцине, вызываемую нейтрализующими антителами L452R и E484Q, однако отсутствует синергическая потеря чувствительности.

Таблица 1 — Количество депонированных геномов вариантов Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) и Delta (B.1.617.2) варианта вируса SARS-CoV-2 в базе GISAID.

			Количество депонированных геномов SARS-CoV-2			В том числе количество геномов, депонированных за последние 4 недели (18.06.21 – 16.07.21)			
Страна	Учреждение, проводившее се- квенирование	Варианты: Alpha (В.1.1.7) Веtа (В.1.351) Gamma (Р.1) Delta (В.1.617.2)	Всего	Процент геномов, относящихся к варианту: Alpha (В.1.1.7) Beta (В.1.351) Gamma (Р.1) Delta (В.1.617.2)	Варианты: Alpha (В.1.1.7) Beta (В.1.351) Gamma (Р.1) Delta (В.1.617.2)	Bcero	Процент геномов, относящихся к варианту:		
Албания (рост заболеваемости)	Respiratory Virus Unit, National Infection Service, Public Health England	Alpha – 27 Beta – 0 Gamma – 0 Delta – 0	30	Alpha – 90 Beta – 0 Gamma – 0 Delta – 0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$		
Ангилья (стабилизация заболеваемости)	Carrington Lab, Department of PreClinical Sciences, Faculty of Medical Sciences, The University of the West Indies	Alpha – 2 Beta – 0 Gamma – 0 Delta – 1	5	Alpha – 40 Beta – 0 Gamma – 0 Delta – 20	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$		

Ангола (рост заболеваемости)	KRISP, KZN Research Innovation and Sequencing Platform	Alpha – 58 Beta – 388 Gamma – 0 Delta – 7	746	Alpha – 7,7 Beta – 52 Gamma – 0 Delta – 0,9	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0	0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0
Антигуа и Барбуда (стабилизация заболеваемости)	Carrington Lab, Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St Augustine Campus	Alpha – 5 Beta – 0 Gamma – 0 Delta – 0	11	Alpha – 45,4 Beta – 0 Gamma – 0 Delta – 0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0
Аргентина (рост заболеваемости)	Instituto Nacional EnfermedadesInfecciosasC.G.Malbran	Alpha – 126 Beta – 1 Gamma – 244 Delta – 1	4281	Alpha – 2,9 Beta – 0,02 Gamma – 5,7 Delta – 0,02	Alpha – 0 Beta – 0 Gamma – 8 Delta – 0	15	Alpha – 0 Beta – 0 Gamma – 53,3 Delta – 0
Армения (рост заболеваемости)	Institute of Molecular Biology NAS RA, Republic of Armenia, Department of Bioengineering, Bi- oinformaticsInstitute and Molecu- lar Biology IBMPh RAU, Republic of Armenia	Alpha – 14 Beta – 0 Gamma – 0 Delta – 0	81	Alpha – 17,2 Beta – 0 Gamma – 0 Delta – 0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0
Аруба (стабилизация заболеваемости)	National Institute for Public Health and the Environment (RIVM)	Alpha – 549 Beta – 4 Gamma – 116 Delta – 3	1200	Alpha – 45,7 Beta – 0,3 Gamma – 9,6 Delta – 0,2	Alpha - 0 $Beta - 0$ $Gamma - 9$ $Delta - 0$	23	Alpha – 0 Beta – 0 Gamma – 39,1 Delta – 0
Австралия (рост заболеваемости)	NSW Health Pathology – Institute of Clinical Pathology and Medical Research; Westmead Hospital; University of Sydney	Alpha – 500 Beta – 69 Gamma – 7 Delta – 627	18631	Alpha – 2,6 Beta – 0,3 Gamma – 0,03 Delta – 3,3	Alpha – 37 Beta – 3 Gamma – 0 Delta – 392	465	Alpha – 8 Beta – 0,6 Gamma – 0 Delta – 84,3
Австрия (рост заболеваемости)	Bergthaler laboratory, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences	Alpha – 3666 Beta – 260 Gamma – 24 Delta – 393	16689	Alpha – 21,9 Beta – 1,5 Gamma – 0,1 Delta – 2,3	Alpha – 191 Beta – 0 Gamma – 0 Delta – 148	388	Alpha – 49,2 Beta – 0 Gamma – 0 Delta – 38,1

Азербайджан (рост заболеваемости)	National Hematology and Transfusiology Center	Alpha - 3 $Beta - 0$ $Gamma - 0$ $Delta - 0$	13	Alpha – 23 Beta – 0 Gamma – 0 Delta – 0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Бахрейн (снижение заболеваемости)	Communicable Disease Laboratory, Public Health Directorate	Alpha – 51 Beta – 1 Gamma – 0 Delta – 91	330	Alpha – 15,4 Beta – 0,3 Gamma – 0 Delta – 27,5	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 20$	21	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 95,2$
Бангладеш (рост заболеваемости)	Child Health Research Foundation	Alpha – 91 Beta – 41 Gamma – 1 Delta – 156	1888	Alpha – 4,8 Beta – 2,1 Gamma – 0,05 Delta – 8,2	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 31$	56	Alpha – 0 Beta – 0 Gamma – 0 Delta – 55,3
Барбадос (стабилизация заболеваемости)	Carrington Lab, Department of PreClinical Sciences, Building 36, First Floor Biochemistry Unit, Faculty of Medical Sciences, The University of the West Indies	Alpha – 20 Beta – 0 Gamma – 1 Delta – 4	28	Alpha – 71,4 Beta – 0 Gamma – 3,5 Delta – 14,2	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Беларусь (рост заболеваемости)	Laboratory for HIV and opportunistic infections diagnosis The Republican Research and Practical Center for Epidemiology and Microbiology (RRPCEM)	Alpha - 3 $Beta - 0$ $Gamma - 0$ $Delta - 0$	44	Alpha – 6,8 Beta – 0 Gamma – 0 Delta – 0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Бельгия (рост заболеваемости)	KU Leuven, Rega Institute, Clinical and Epidemiological Virology	Alpha – 20355 Beta – 1069 Gamma – 1738 Delta – 1489	33137	Alpha – 61,4 Beta – 3,2 Gamma – 5,2 Delta – 4,5	Alpha – 474 Beta – 3 Gamma – 46 Delta – 855	1657	Alpha – 28,6 Beta – 0,1 Gamma – 2,7 Delta – 51,6
Белиз (снижение заболеваемости)	Texas Children's Microbiome Center	Alpha – 1 Beta – 0 Gamma – 0 Delta – 0	52	Alpha – 2 Beta – 0 Gamma – 0 Delta – 0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$

Бермудские острова (стабилизация заболеваемости)	Respiratory Virus Unit, National Infection Service, Public Health England	Alpha - 2 $Beta - 0$ $Gamma - 0$ $Delta - 0$	40	Alpha – 5 Beta – 0 Gamma – 0 Delta – 0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0
Боливия (снижение заболеваемо- сти)	Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Insti- tute, FIOCRUZ	Alpha – 0 Beta – 0 Gamma – 17 Delta – 0	66	Alpha – 0 Beta – 0 Gamma – 25,7 Delta – 0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Бонэйр (стабилизация заболеваемости)	National Institute for Public Health and the Environment (RIVM)	Alpha – 159 Beta – 0 Gamma – 0 Delta – 0	183	Alpha – 86,8 Beta – 0 Gamma – 0 Delta – 0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	1	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Босния и Герцеговина (рост заболеваемости)	University of Sarajevo, Veterinary Faculty, Laboratory for Molecular Diagnostic and Research Laborato- ry	Alpha – 66 Beta – 0 Gamma – 0 Delta – 14	165	Alpha – 40 Beta – 0 Gamma – 0 Delta – 8,4	Alpha - 2 $Beta - 0$ $Gamma - 0$ $Delta - 13$	24	Alpha – 8,3 Beta – 0 Gamma – 0 Delta – 54,1
Ботсвана (рост заболеваемости)	Botswana Institute for Technology Research and Innovation	Alpha – 0 Beta – 391 Gamma – 0 Delta –214	735	Alpha – 0 Beta – 53,2 Gamma – 0 Delta – 29,1	Alpha – 0 Beta – 45 Gamma – 0 Delta – 163	286	Alpha – 0 Beta – 15,7 Gamma – 0 Delta – 57
Бразилия (снижение заболеваемости)	Instituto Adolfo Lutz, Interdiciplinary Procedures Center, Strategic Laboratory	Alpha – 496 Beta – 5 Gamma – 13599 Delta – 23	22546	Alpha – 2,2 Beta – 0,02 Gamma – 60,3 Delta – 0,1	Alpha – 0 Beta – 0 Gamma – 58 Delta – 4	144	Alpha – 0 Beta – 0 Gamma – 40,2 Delta – 2,7
Бруней (рост заболеваемости)	National Public Health Laboratory, National Centre for Infectious Dis- eases (National Virology Reference Laboratory)	Alpha - 0 $Beta - 1$ $Gamma - 0$ $Delta - 0$	10	Alpha – 0 Beta – 10 Gamma – 0 Delta – 0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$

Болгария (снижение заболеваемости)	National Center of Infectious and Parasitic Diseases	Alpha – 2889 Beta – 1 Gamma – 0 Delta – 6	3210	Alpha – 90 Beta – 0,03 Gamma – 0 Delta – 0,1	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	4	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0
Буркина Фасо (рост заболеваемости)	Laboratoire bacteriologie virologie CHUSS	Alpha - 3 $Beta - 0$ $Gamma - 0$ $Delta - 0$	264	Alpha - 1,1 $Beta - 0$ $Gamma - 0$ $Delta - 0$	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Бурунди (рост заболеваемости)		Alpha - 1 $Beta - 2$ $Gamma - 0$ $Delta - 3$	9	Alpha – 11,1 Beta – 22,2 Gamma – 0 Delta – 33,3	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0
Британские Виргинские Острова (стабилизация заболеваемости)	Caribbean Public Health Agency	Alpha – 1 Beta – 0 Gamma – 0 Delta – 0	11	Alpha – 9,1 Beta – 0 Gamma – 0 Delta – 0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Великобритания (рост заболеваемости)	COVID-19 Genomics UK (COG-UK) Consortium. Wellcome Sanger Institute for the COVID-19 Genomics UK (COG-UK) consortium.	Alpha – 266195 Beta – 809 Gamma – 205 Delta – 133262	55866 2	Alpha – 47,6 Beta – 0,1 Gamma – 0,03 Delta – 23,8	Alpha – 674 Beta – 4 Gamma – 5 Delta – 64421	71509	Alpha – 1 Beta – 0,005 Gamma – 0,007 Delta – 90
Венгрия (рост заболеваемости)	National Laboratory of Virology, Szentágothai Research Centre	Alpha – 29 Beta – 0 Gamma – 0 Delta – 0	435	Alpha - 6,7 $Beta - 0$ $Gamma - 0$ $Delta - 0$	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Венесуэла (снижение заболеваемости)	Laboratorio de Virología Molecu- lar	Alpha – 0 Beta – 0 Gamma – 17 Delta – 0	148	Alpha – 0 Beta – 0 Gamma – 11,4 Delta – 0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$

Вьетнам (рост заболеваемости)	National Influenza Center, National Institute of Hygiene and Epidemi- ology (NIHE)	Alpha – 26 Beta – 0 Gamma – 0 Delta – 72	186	Alpha – 13,9 Beta – 0 Gamma – 0 Delta – 38,7	Alpha - 1 $Beta - 0$ $Gamma - 0$ $Delta - 0$	1	Alpha – 100 Beta – 0 Gamma – 0 Delta – 0
Габон (рост заболеваемости)	Centre de recherches médicales de Lambaréné (CERMEL)	Alpha – 35 Beta – 4 Gamma – 0 Delta – 0	205	Alpha – 17 Beta – 2 Gamma – 0 Delta – 0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Гаити (снижение заболеваемости)	Laboratoire National de Santé Publique – LNSP (HAITI - LNSP)	Alpha – 1 Beta – 5 Gamma – 47 Delta – 0	79	Alpha – 1,2 Beta – 2,4 Gamma – 59,5 Delta – 0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0
Гайана (снижение заболеваемости)	CNR Virus des Infections Respiratoires - France SUD	Alpha – 0 Beta – 0 Gamma – 1 Delta – 0	11	Alpha - 0 $Beta - 0$ $Gamma - 9,1$ $Delta - 0$	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Гамбия (рост заболеваемости)	MRCG at LSHTM Genomics lab	Alpha – 53 Beta – 0 Gamma – 0 Delta – 2	476	Alpha – 11,1 Beta – 0 Gamma – 0 Delta – 0,4	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Гана (рост заболеваемости)	Department of Biochemistry, Cell and Molecular Biology, West Afri- can Centre for Cell Biology of In- fectious Pathogens (WACCBIP), University of Ghana	Alpha – 367 Beta – 17 Gamma – 0 Delta – 9	901	Alpha – 40,7 Beta – 1,8 Gamma – 0 Delta – 1	Alpha – 0 Beta – 0 Gamma – 0 Delta – 1	3	Alpha – 0 Beta – 0 Gamma – 0 Delta – 33,3
Гваделупа (стабилизация заболеваемости)	National Reference Center for Viruses of Respiratory Infections, Institut Pasteur, Paris	Alpha – 70 Beta – 4 Gamma – 0 Delta – 4	154	Alpha – 45,4 Beta – 2,6 Gamma – 0 Delta – 2,6	Alpha – 7 Beta – 0 Gamma – 0 Delta – 1	8	Alpha – 87,5 Beta – 0 Gamma – 0 Delta – 12,5

Гватемала (рост заболеваемости)	Asociación de Salud Integral/Clínica Familiar Luis Ángel García	Alpha – 1 Beta – 0 Gamma – 0 Delta – 0	309	Alpha - 0,3 $Beta - 0$ $Gamma - 0$ $Delta - 0$	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Гвинея (рост заболеваемости)	Centre de Recherche et de Formation en Infectiologie Guinée	Alpha – 12 Beta – 0 Gamma – 0 Delta – 0	8	Alpha – 150 Beta – 0 Gamma – 0 Delta – 0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0
Гвинея Биссау (рост заболеваемости)	MRCG at LSHTM, Genomics lab	Alpha – 33 Beta – 1 Gamma – 0 Delta – 0	48	Alpha – 68,7 Beta – 2 Gamma – 0 Delta – 0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0
Германия (рост заболеваемости)	CharitéUniversitätsmedizin Berlin, InstitutfürVirologie. Institute of infectious medicine & hospital hygiene, CaSe-Group.	Alpha – 101697 Beta – 2200 Gamma – 339 Delta – 2688	14036 5	Alpha – 72,4 Beta – 1,5 Gamma – 0,2 Delta – 1,9	Alpha – 678 Beta – 9 Gamma – 30 Delta – 924	2203	Alpha – 30,7 Beta – 0,4 Gamma – 1,3 Delta – 42
Гибралтар (рост заболеваемости)	Respiratory Virus Unit, National Infection Service, Public Health England	Alpha – 131 Beta – 0 Gamma – 0 Delta – 0	482	Alpha - 27,1 $Beta - 0$ $Gamma - 0$ $Delta - 0$	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0
Гренада (стабилизация заболеваемости)	The Caribbean Public Health Agen-cy	Alpha - 2 $Beta - 0$ $Gamma - 0$ $Delta - 0$	7	Alpha - 28,5 $Beta - 0$ $Gamma - 0$ $Delta - 0$	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Греция (рост заболеваемости)	Greek Genome Center, Biomedical Research Foundation of the Acad- emy of Athens (BRFAA)	Alpha – 5440 Beta – 22 Gamma – 0 Delta – 10	7929	Alpha – 68,6 Beta – 0,3 Gamma – 0 Delta – 0,1	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0	0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0

	Danartmant for Viralagy Malagy						
Грузия (рост заболеваемости)	Department for Virology, Molecular Biology and Genome Research, R. G. Lugar Center for Public Health Research, National Center for Disease Control and Public Health (NCDC) of Georgia.	Alpha – 23 Beta – 1 Gamma – 0 Delta – 4	79	Alpha – 29,1 Beta – 1,2 Gamma – 0 Delta – 5	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Гондурас (снижение заболеваемо- сти)	Genomics and Proteomics Departament, Gorgas Memorial Institute For Health Studies	Alpha – 1 Beta – 0 Gamma – 0 Delta – 0	66	Alpha - 1,5 $Beta - 0$ $Gamma - 0$ $Delta - 0$	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Гуам (стабилизация заболеваемости)	Centers for Disease Control and Preven-tion Division of Viral Dis- eases, Pathogen Discovery	Alpha – 39 Beta – 3 Gamma – 1 Delta – 1	78	Alpha – 50 Beta – 3,8 Gamma – 1,2 Delta – 1,2	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Дания (рост заболеваемости)	Albertsen lab, Department of Chemistry and Bioscience, Aalborg University. Department of Virus and Microbio- logical Special Diagnostics, Statens Serum Institut.	Alpha – 59856 Beta – 120 Gamma – 53 Delta –2893	11832	Alpha – 50,5 Beta – 0,1 Gamma – 0,04 Delta – 2,4	Alpha – 723 Beta – 12 Gamma – 11 Delta – 2613	3364	Alpha – 21,5 Beta – 0,4 Gamma – 0,3 Delta – 77,6
ДР Конго (снижение заболеваемо- сти)	Pathogen Sequencing Lab, National Institute for Biomedical Research (INRB)	Alpha – 8 Beta – 13 Gamma – 0 Delta – 6	387	Alpha – 2 Beta – 3,4 Gamma – 0 Delta – 1,6	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha –0 Beta – 0 Gamma – 0 Delta – 0
Доминика (снижение заболеваемости)	Carrington Lab, Department of PreClinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St Augustine Campus	Alpha - 4 $Beta - 0$ $Gamma - 0$ $Delta - 0$	9	Alpha – 44,4 Beta – Gamma – 0 Delta – 0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0

Доминиканская Респуб-	Respiratory Viruses Branch, Cen-	Alpha – 8		Alpha – 6,1	Alpha – 0		Alpha – 0
лика	ters for Disease Control and Pre-	Beta – 0	130	Beta – 0	Beta – 0	0	Beta – 0
(снижение	vention, USA	Gamma – 12	130	Gamma – 9,2	Gamma – 0		Gamma – 0
заболеваемости)		Delta – 0		Delta – 0	Delta – 0		Delta – 0
Египет		Alpha – 13		Alpha $-1,3$	Alpha – 0		Alpha – 0
(снижение	Main Chemical Laboratories Egypt	Beta – 0	957	Beta – 0	Beta – 0	0	Beta – 0
заболеваемости)	Army	Gamma – 0	931	Gamma – 0	Gamma – 0		Gamma – 0
заоолеваемости)		Delta – 0		Delta – 0	Delta – 0		Delta – 0
Замбия		Alpha – 2		Alpha -0.3	Alpha – 0		Alpha – 0
(снижение	University of Zambia, School of	Beta – 161	692	Beta $-23,2$	Beta – 0	0	Beta – 0
заболеваемости)	Veterinary Medicine	Gamma – 0	092	Gamma – 0	Gamma – 0		Gamma – 0
заоолеваемости)		Delta – 82		Delta – 11,8	Delta – 0		Delta – 0
Зимбабве	National Microbiology Reference	Alpha – 0		Alpha – 0	Alpha – 0		Alpha – 0
(рост	Laboratory (Quadram Institute Bi-	Beta – 331	558	Beta $-59,3$	Beta -0	0	Beta -0
заболеваемости)	oscience)	Gamma – 0	336	Gamma – 0	Gamma – 0		Gamma – 0
заоолеваемости)	Oscience)	Delta – 0		Delta – 0	Delta – 0		Delta – 0
Израиль	Central Virology Laboratory, Israel	Alpha – 8019		Alpha – 62,7	Alpha – 3		Alpha – 0,5
(рост	Ministry of Health	Beta – 240	12781	Beta – 1,8	Beta – 0	567	Beta – 0
заболеваемости)		Gamma – 12	12/61	Gamma – 0,1	Gamma – 1	307	Gamma – 0,1
заоолеваемости)		Delta – 671		Delta – 5,2	Delta – 558		Delta – 98,4
	Department of Neurovirology, Na-	Alpha –3812		Alpha – 10,7	Alpha – 0		Alpha – 0
Индия	tional Institute of Mental Health	Beta – 221		Beta – 0,6	Beta – 0		Beta – 0
(снижение	and Neurosciences (NIMHANS).	Gamma – 2	35406	Gamma – 0	Gamma – 0	177	Gamma – 0
заболеваемости)	CSIR-Centre for Cellular and Mo-	Delta – 12118		Delta – 34,2	Delta – 119		Delta – 67,2
	lecular Biology			,			·
Индонезия		Alpha – 56		Alpha – 1,8	Alpha – 3		Alpha – 1
(рост	National Institute of Health Re-	Beta – 9	3064	Beta -0.3	Beta – 0	315	Beta – 0
заболеваемости)	search and Development	Gamma – 0	3004	Gamma – 0	Gamma – 0	313	Gamma – 0
3doosiebdewoeth)		Delta – 707		Delta – 23	Delta – 246		Delta – 78,1
Иордания		Alpha – 82		Alpha – 12,1	Alpha – 0		Alpha – 0
(рост	Andersen lab at Scripps Research,	Beta – 2	674	Beta -0.3	Beta – 0	1	Beta – 0
заболеваемости)	CA, USA	Gamma – 5	0,4	Gamma – 0,7	Gamma – 0	1	Gamma – 0
Succince III)		Delta – 5		Delta -0.7	Delta – 1		Delta – 100

Ирак (рост заболеваемости)	Biology, College of Education Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland generated and submitted to GISAID	Alpha – 70 Beta – 1 Gamma – 0 Delta – 2	206	Alpha – 33,9 Beta – 0,5 Gamma – 0 Delta – 1	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Иран (рост заболеваемости)	National Reference Laboratory for COVID-19, Pasteur Institute of Iran	Alpha – 52 Beta – 2 Gamma – 0 Delta – 11	472	Alpha – 11 Beta – 0,4 Gamma – 0 Delta – 2,4	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Ирландия (рост заболеваемости)	National Virus Reference Laboratory	Alpha – 14875 Beta – 69 Gamma – 27 Delta – 864	19517	Alpha – 76,2 Beta – 0,3 Gamma – 0,1 Delta – 4,4	Alpha - 163 $Beta - 0$ $Gamma - 0$ $Delta - 438$	892	Alpha – 18,2 Beta – 0 Gamma – 0 Delta –49,1
Исландия (рост заболеваемости)	deCODE genetics	Alpha - 20 $Beta - 0$ $Gamma - 0$ $Delta - 0$	5070	Alpha - 0,4 $Beta - 0$ $Gamma - 0$ $Delta - 0$	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Испания (рост заболеваемости)	Hospital Universitario 12 de Octubre	Alpha – 19360 Beta – 304 Gamma – 864 Delta – 1755	40857	Alpha – 47,3 Beta – 0,7 Gamma – 2,1 Delta – 4,3	Alpha –347 Beta – 27 Gamma – 73 Delta – 893	1867	Alpha – 18,5 Beta – 1,4 Gamma – 3,9 Delta – 47,8
Италия (рост заболеваемости)	Army Medical Center, Scientific Department, Virology Laboratory	Alpha – 24075 Beta – 52 Gamma – 627 Delta – 1550	37121	Alpha – 64,8 Beta – 0,1 Gamma – 1,6 Delta – 4,1	Alpha – 822 Beta – 1 Gamma – 92 Delta – 863	2259	Alpha – 36,3 Beta – 0,04 Gamma – 4 Delta – 38,2
Казахстан (рост заболеваемости)	Reference laboratory for the control of viral infections	Alpha – 174 Beta – 0 Gamma – 0 Delta – 0	348	Alpha - 50 $Beta - 0$ $Gamma - 0$ $Delta - 0$	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Камбоджа (стабилизация заболеваемости)	Virology Unit, Institut Pasteur du Cambodge	Alpha – 348 Beta – 1 Gamma – 0 Delta – 37	451	Alpha – 77,1 Beta – 0,2 Gamma – 0 Delta – 8,2	Alpha – 45 Beta – 0 Gamma – 0 Delta – 19	73	Alpha – 61,6 Beta – 0 Gamma – 0 Delta – 26

Камерун (стабилизация заболевае- мости)	CREMER(Centre de Recher- cherches sur les Maladies Emer- gentes et Ré-émergentes)	Alpha – 14 Beta – 9 Gamma – 0 Delta – 0	204	Alpha – 6,8 Beta – 4,4 Gamma – 0 Delta – 0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	$\begin{array}{c} Alpha-0\\ Beta-0\\ Gamma-0\\ Delta-0 \end{array}$
Канада (снижение заболеваемо- сти)	Laboratoire de santé publique du Québec	Alpha – 22764 Beta –860 Gamma – 7710 Delta – 2367	58439	Alpha – 38,9 Beta – 1,4 Gamma – 13,1 Delta – 4	Alpha – 557 Beta – 5 Gamma – 26 Delta – 87	1020	Alpha – 54,6 Beta – 0,5 Gamma – 2,5 Delta – 8,5
Канарские острова	SeqCOVID-SPAIN consorti- um/IBV(CSIC)	Alpha - 110 $Beta - 0$ $Gamma - 0$ $Delta - 0$	358	Alpha - 30,7 $Beta - 0$ $Gamma - 0$ $Delta - 0$	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0
Катар (рост заболеваемости)	Biomedical Research Center (BRC), Qatar University / Qatar Genome Project (QGP)	Alpha – 257 Beta – 693 Gamma – 0 Delta – 180	2910	Alpha – 8,8 Beta – 23,8 Gamma – 0 Delta – 6,1	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Каймановы Острова (стабилизация заболеваемости)	Carrington Lab, Department of PreClinical Sciences, Building 36, First Floor Biochemistry Unit, Faculty of Medical Sciences, The University of the West Indies	Alpha – 10 Beta – 0 Gamma – 1 Delta – 0	18	Alpha – 55,5 Beta – 0 Gamma – 5,5 Delta – 0	Alpha – 0 Beta – 0 Gamma – 1 Delta – 0	2	Alpha - 0 $Beta - 0$ $Gamma - 50$ $Delta - 0$
Кения (рост заболеваемости)	KEMRI-Wellcome Trust Research Programme/KEMRI-CGMR-C Kilifi	Alpha – 452 Beta – 177 Gamma – 0 Delta – 37	1739	Alpha – 26 Beta – 10,1 Gamma – 0 Delta – 2,1	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Кипр (рост заболеваемости)	Department of Molecular Virology, Cyprus Institute of Neurology and Genetics	Alpha – 10 Beta – 0 Gamma – 0 Delta – 0	133	Alpha – 7,5 Beta – 0 Gamma – 0 Delta – 0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0	0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0

Китай (снижение заболеваемо- сти)	National Institute for Viral Disease Control and Prevention	Alpha – 100 Beta – 89 Gamma – 2 Delta – 174	3419	Alpha – 2,9 Beta – 2,6 Gamma – 0,06 Delta – 5	Alpha – 0 Beta – 0 Gamma – 0 Delta – 104	109	Alpha – 0 Beta – 0 Gamma – 0 Delta – 95,4
Колумбия (снижение заболеваемости)	Instituto Nacional de Salud- Dirección de Investigación en Salud Pública	Alpha – 87 Beta – 1 Gamma – 326 Delta – 0	1854	Alpha – 4,7 Beta – 0,05 Gamma – 17,5 Delta – 0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	10	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0
Косово (рост заболеваемости)	Charité Universitätsmedizin Berlin, Institut für Virologie	Alpha – 22 Beta – 0 Gamma – 0 Delta – 2	51	Alpha – 43,1 Beta – 0 Gamma – 0 Delta – 4	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Коста-Рика (стабилизация заболеваемости)	Inciensa, Instituto Costarricense de Investigación y Enseñanza en Nu- trición y Salud	Alpha – 115 Beta – 12 Gamma – 58 Delta – 0	696	Alpha – 16,5 Beta – 1,7 Gamma – 8,3 Delta – 0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0	2	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0
Кот Д'Ивуар (снижение заболеваемо- сти)	Molecular diagnostic unit for viral haemorrhagic fevers and emerging viruses, Bouaké CHU Laboratory	Alpha – 15 Beta – 1 Gamma – 0 Delta – 0	145	Alpha – 10,3 Beta – 0,7 Gamma – 0 Delta – 0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0
Кувейт (снижение заболеваемо- сти)	Virology Unit, Department of Microbiology, Faculty of Medicine, Kuwait	Alpha – 26 Beta – 1 Gamma – 0 Delta – 59	124	Alpha – 20,9 Beta – 0,8 Gamma – 0 Delta –47,5	Alpha – 2 Beta – 1 Gamma – 0 Delta – 32	48	Alpha – 4,1 Beta – 2 Gamma – 0 Delta – 66,6
Кюрасао (рост заболеваемости)	National Institute for Public Health and the Environment (RIVM)	Alpha – 311 Beta – 0 Gamma – 9 Delta – 1	435	Alpha – 71,5 Beta – 0 Gamma – 2 Delta – 0,2	Alpha – 2 Beta – 0 Gamma – 2 Delta – 0	7	Alpha – 28,5 Beta – 0 Gamma –28,5 Delta – 0

Латвия (снижение заболеваемо- сти)	Latvian Biomedical Research and Study Centre	Alpha – 3145 Beta – 9 Gamma – 0 Delta – 22	5483	Alpha – 57,3 Beta – 0,1 Gamma – 0 Delta – 0,4	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0
Лесото (рост заболеваемости)	National Institute for Communicable Diseases of the National Health Laboratory Service	Alpha – 0 Beta – 14 Gamma – 0 Delta – 0	18	Alpha – 0 Beta – 77,8 Gamma – 0 Delta – 0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Ливан (рост заболеваемости)	Laboratory of Molecular Biology and Cancer Immunology,Lebanese University Public Health England	Alpha – 16 Beta – 0 Gamma – 0 Delta – 19	84	Alpha – 19 Beta – 0 Gamma – 0 Delta – 22,6	Alpha – 0 Beta – 0 Gamma – 0 Delta – 19	19	Alpha – 0 Beta – 0 Gamma – 0 Delta – 100
Ливия (рост заболеваемости)		Alpha – 1 Beta – 0 Gamma – 0 Delta – 0	12	Alpha - 8,3 $Beta - 0$ $Gamma - 0$ $Delta - 0$	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0
Литва (рост заболеваемости)	Vilnius University Hospital Santaros Klinikos, Center of Laboratory Medicine	Alpha – 9208 Beta – 11 Gamma – 3 Delta – 21	13425	Alpha – 68,5 Beta – 0,08 Gamma – 0,02 Delta – 0,1	Alpha – 36 Beta – 0 Gamma – 0 Delta – 9	101	Alpha – 35,6 Beta – 0 Gamma – 0 Delta – 8,9
Лихтенштейн (снижение заболеваемо- сти)	Bergthaler laboratory, CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences	Alpha – 7 Beta – 0 Gamma – 0 Delta – 0	31	Alpha - 22,5 $Beta - 0$ $Gamma - 0$ $Delta - 0$	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Люксембург (снижение заболеваемо- сти)	Laboratoire national de santé, Microbiology, Microbial Genomics Platform	Alpha – 3975 Beta – 745 Gamma – 47 Delta – 52	9133	Alpha – 43,5 Beta – 8,1 Gamma – 0,5 Delta – 0,6	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Марокко (рост заболеваемости)	Laboratoire de Biotechnologie	Alpha – 101 Beta – 0 Gamma – 0 Delta – 1	216	Alpha - 46,7 $Beta - 0$ $Gamma - 0$ $Delta - 0,5$	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0

		Alpha – 2		Alpha – 0,2	Alpha – 0		Alpha – 0
Майотта (рост заболеваемости)	National Reference Center for Viruses of Respiratory Infections, Institut Pasteur, Paris	Beta – 33	705	Beta – 4,7	Beta – 0	0	Beta – 0
		Gamma – 0		Gamma – 0	Gamma – 0		Gamma – 0
		Delta – 0		Delta – 0	Delta – 0		Delta – 0
	Institute for Medical Research, In-	Alpha – 11		Alpha – 0,7	Alpha – 0		Alpha – 0
Малайзия	fectious Disease Research Centre,	Beta – 162 Gamma – 0 Delta – 58	1489	Beta – 10,8	Beta – 4	24	Beta – 16,6
(рост заболеваемости)	National Institutes of Health, Min-			Gamma – 0	Gamma – 0		Gamma – 0
7	istry of Health Malaysia			Delta – 3,9	Delta – 13		Delta – 54,1
		Alpha – 2		Alpha -0.5	Alpha – 0		Alpha – 0
Малави	KRISP, KZN Research Innovation	Beta – 313	257	Beta -87,6	Beta -0	0	Beta – 0
(рост заболеваемости)	and Sequencing Platform	Gamma – 0	357	Gamma – 0	Gamma – 0		Gamma – 0
,		Delta – 14		Delta – 4	Delta – 0		Delta – 0
Мальта (стабилизация заболеваемости)	Molecular Diagnostics Pathology Department Mater Dei Hospital Malta	Alpha – 151 Beta – 3 Gamma – 24 Delta – 11	203	Alpha – 74,3 Beta – 1,5 Gamma – 11,8 Delta – 5,4	Alpha – 1 Beta – 0 Gamma – 1 Delta – 10	16	Alpha – 6,2 Beta – 0 Gamma – 6,2 Delta – 62,5
Мартиника (стабилизация заболевае- мости)	CNR Virus des Infections Respiratoires – France SUD	Alpha – 22 Beta – 2 Gamma – 0 Delta – 0	38	Alpha – 57,9 Beta – 5,2 Gamma – 0 Delta – 0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Мексика (рост заболеваемости)	Instituto de diagnóstico y ReferenciaEpidemiologicos (INDRE)	Alpha – 1476 Beta – 19 Gamma – 1765 Delta – 925	16481	Alpha – 8,9 Beta – 0,1 Gamma – 10,7 Delta – 5,6	Alpha – 61 Beta – 0 Gamma – 275 Delta –523	1430	Alpha – 4,2 Beta – 0 Gamma – 19,2 Delta – 36,5
Мозамбик (рост заболеваемости)	KRISP, KZN Research Innovation and Sequencing Platform, South Africa	Alpha – 1 Beta – 319 Gamma – 0 Delta – 0	478	Alpha – 0,2 Beta – 66,7 Gamma – 0 Delta – 0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0

Маври́кий (стабилизация заболевае- мости)	CNR Virus des Infections Respiratoires – France SUD	Alpha – 1 Beta – 8 Gamma – 0 Delta – 5	192	Alpha – 0,5 Beta – 4,1 Gamma – 0 Delta – 2,6	Alpha – 0 Beta – 0 Gamma – 0 Delta – 3	9	Alpha – 0 Beta – 0 Gamma – 0 Delta – 33,3
Молдавия (рост заболеваемости)	ONCOGENE LLC	Alpha – 14 Beta – 0 Gamma – 0 Delta – 0	23	Alpha – 60,8 Beta – 0 Gamma – 0 Delta – 0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0
Монако (рост заболеваемости)	National Reference Center for Viruses of Respiratory Infections, Institut Pasteur, Paris	Alpha – 3 Beta – 0 Gamma – 0 Delta – 34	42	Alpha – 7,1 Beta – 0 Gamma – 0 Delta – 81	Alpha – 0 Beta – 0 Gamma – 0 Delta – 15	18	Alpha – 0 Beta – 0 Gamma – 0 Delta – 83,3
Монголия (снижение заболеваемо- сти)	National Center for Communicable Diseases (NCCD) National Influ- enza Center	Alpha – 3 Beta – 0 Gamma – 0 Delta – 0	27	Alpha – 37,5 Beta – 0 Gamma – 0 Delta – 0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Монтенегро		$\begin{array}{c} Alpha-7\\ Beta-0\\ Gamma-0\\ Delta-0 \end{array}$	31	Alpha – 22,5 Beta – 0 Gamma – 0 Delta – 0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	$\begin{array}{c} Alpha-0\\ Beta-0\\ Gamma-0\\ Delta-0 \end{array}$
Монтсеррат (стабилизация заболеваемости)	Carrington Lab, Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies	$\begin{array}{c} Alpha-2\\ Beta-0\\ Gamma-0\\ Delta-0 \end{array}$	2	Alpha – 100 Beta – 0 Gamma – 0 Delta – 0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0
Мьянма (рост заболеваемости)	DSMRC	Alpha – 2 Beta – 0 Gamma – 0 Delta – 5	21	Alpha – 9,5 Beta – 0 Gamma – 0 Delta – 23,8	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0	0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0

Намибия (снижение заболеваемо- сти)	National Institute for Communicable Diseases of the National Health Laboratory Service	Alpha – 0 Beta – 108 Gamma – 0 Delta – 16	231	Alpha – 0 Beta – 100 Gamma – 0 Delta – 6,9	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	174	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0
Непал (рост заболеваемости)	Molecular and Genomics Research Lab, Dhulikhel Hospital, Kath- mandu University Hospital School of Public Health, The Uni- versity of Hong Kong	Alpha – 11 Beta – 0 Gamma – 0 Delta – 88	110	$\begin{array}{c} Alpha-10\\ Beta-0\\ Gamma-0\\ Delta-80 \end{array}$	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0
Нигер (снижение заболеваемо- сти)		Alpha – 1 Beta – 0 Gamma – 0 Delta – 3	24	Alpha – 4,1 Beta – 0 Gamma – 0 Delta – 12,5	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 2$	0	$\begin{array}{c} Alpha-0\\ Beta-0\\ Gamma-0\\ Delta-0 \end{array}$
Нигерия (рост заболеваемости)	African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University	Alpha – 143 Beta – 1 Gamma – 0 Delta – 1	866	Alpha – 16,5 Beta – 0,1 Gamma – 0 Delta – 0,1	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	2	$\begin{array}{c} Alpha-0\\ Beta-0\\ Gamma-0\\ Delta-0 \end{array}$
Нидерланды (рост заболеваемости)	National Institute for Public Health and the Environment (RIVM)	Alpha – 27660 Beta – 692 Gamma – 522 Delta – 840	41916	Alpha – 65,9 Beta – 1,6 Gamma – 1,2 Delta – 2	Alpha – 377 Beta – 0 Gamma – 7 Delta – 287	993	Alpha – 37,9 Beta – 0 Gamma – 0,7 Delta – 28,9
Новая Зеландия (рост заболеваемости)	Institute of Environmental Science and Research (ESR)	Alpha – 150 Beta – 29 Gamma – 7 Delta – 31	1101	Alpha – 13,6 Beta – 2,6 Gamma – 0,6 Delta – 2,8	Alpha – 0 Beta – 1 Gamma – 0 Delta – 4	8	Alpha – 0 Beta – 12,5 Gamma – 0 Delta – 50
Норвегия (рост заболеваемости)	Norwegian Institute of Public Health, Department of Virology	Alpha – 8056 Beta – 359 Gamma – 7 Delta –347	13247	Alpha – 60,8 Beta – 2,7 Gamma – 0,05 Delta – 2,6	Alpha – 303 Beta – 0 Gamma – 0 Delta – 193	575	Alpha – 52,7 Beta – 0 Gamma – 0 Delta -33,5

ОАЭ (снижение заболеваемости)	Wellcome Sanger Institute for the COVID-19 Genomics UK (COG- UK) Consortium	Alpha – 21 Beta – 6 Gamma – 0 Delta – 0	1845	Alpha – 1,1 Beta – 0,3 Gamma – 0 Delta – 0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0	0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0
Оман (снижение заболеваемо- сти)	Oman-National Influenza Center	Alpha – 30 Beta – 4 Gamma – 0 Delta – 8	446	Alpha – 6,7 Beta – 0,9 Gamma – 0 Delta – 1,8	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0	23	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0
Пакистан (рост заболеваемости)	Department of Virology, Public Health Laboratories Division	Alpha – 180 Beta – 35 Gamma – 0 Delta – 28	458	Alpha – 39,3 Beta – 7,6 Gamma – 0 Delta – 6,1	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0
Палестина (рост заболеваемости)	Biochemistry and Molecular Biology Department-Faculty of Medicine, Al-Quds University	Alpha – 27 Beta – 0 Gamma – 0 Delta – 0	132	Alpha - 20,4 $Beta - 0$ $Gamma - 0$ $Delta - 0$	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0
Панама (стабилизация заболевае- мости)	Gorgas memorial Institute For Health Studies	Alpha – 0 Beta – 2 Gamma – 0 Delta – 0	896	Alpha - 0 $Beta - 0,2$ $Gamma - 0$ $Delta - 0$	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0
Парагвай (снижение заболеваемо- сти)	Laboratorio Central de Salud Publica de Paraguay	Alpha – 4 Beta – 0 Gamma – 53 Delta – 0	159	Alpha – 2,5 Beta – 0 Gamma – 33,3 Delta – 0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Перу (снижение заболеваемо- сти)	Laboratorio de Referencia Nacional de Biotecnología y Biología Molecular. Instituto Nacional de SaludPerú	Alpha – 15 Beta – 0 Gamma – 25 Delta – 2	1796	Alpha - 0,8 $Beta - 0$ $Gamma - 1,4$ $Delta - 0,1$	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha – 0 Beta – 0 Gamma – 0 Delta – 0

Польша (снижение заболеваемости)	genXone SA, Research & Development Laboratory	Alpha – 14723 Beta – 45 Gamma – 7 Delta – 160	17055	Alpha – 86,3 Beta – 0,2 Gamma – 0,04 Delta – 0,9	Alpha – 72 Beta – 0 Gamma – 1 Delta – 47	181	Alpha – 39,7 Beta – 0 Gamma – 0,5 Delta – 26
Португалия (рост заболеваемости)	Instituto Nacional de Saude (INSA)	Alpha – 4961 Beta – 100 Gamma – 184 Delta – 1992	11415	Alpha – 43,4 Beta – 0,8 Gamma – 1,6 Delta – 17,4	Alpha – 107 Beta – 4 Gamma – 6 Delta – 935	1230	Alpha – 8,7 Beta – 0,3 Gamma – 0,4 Delta – 76
Республика Джибути (рост заболеваемости)	Naval Medical Research Center Biological Defense Research Di- rectorate	Alpha – 62 Beta – 34 Gamma – 0 Delta – 0	139	Alpha – 44,6 Beta – 24,4 Gamma – 0 Delta – 0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$	0	Alpha - 0 $Beta - 0$ $Gamma - 0$ $Delta - 0$
Республика Конго (рост заболеваемости)	Institute of Tropical Medicine	Alpha – 4 Beta – 0 Gamma – 0 Delta – 1	147	Alpha - 2,7 $Beta - 0$ $Gamma - 0$ $Delta - 0,6$	Alpha – 1 Beta – 0 Gamma – 0 Delta – 1	17	Alpha – 5,8 Beta – 0 Gamma – 0 Delta – 5,8
Реюньон	CNR Virus des Infections Respiratoires – France SUD	Alpha – 60 Beta – 402 Gamma – 0 Delta – 2	1459	Alpha - 4,1 Beta - 27,5 Gamma - 0 Delta - 0,1	Alpha – 0 Beta – 35 Gamma – 0 Delta – 0	116	Alpha – 0 Beta – 30,1 Gamma – 0 Delta – 0
Россия (рост заболеваемости)	WHO National Influenza Centre Russian Federation. Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Medical University, Moscow, Russian Federation. Federal Budget Institution of Science, State Research Center for Applied Microbiology & Biotechnology. Group of Genetic Engeneering and	Alpha – 331 Beta – 22 Gamma – 0 Delta – 832	5554	Alpha – 5,9 Beta – 0,4 Gamma – 0 Delta – 14,9	Alpha – 0 Beta – 0 Gamma – 0 Delta – 11	56	Alpha – 0 Beta – 0 Gamma – 0 Delta – 19,6

	Biotechnology, Federal Budget Institution of Science 'Central Research Institute of Epidemiology' of The Federal Service on Customers' Rights Protection and Human Well-being Surveillance. State Research Center of Virology and Biotechnology VECTOR, Department of Collection of Microorganisms.						
Румыния	National Institute of Infectious	Alpha – 646	1094	Alpha – 59	Alpha – 0	16	Alpha – 0
(рост	Diseases-Prof. Dr. Matei Bals Mo-	Beta – 7		Beta – 0,6	Beta – 0		Beta – 0
заболеваемости)	lecular Diagnostics Laboratory	Gamma – 6		Gamma – 0,5	Gamma – 0		Gamma – 0
		Delta – 47		Delta -4.3	Delta – 8		Delta – 50
Руанда	GIGA Medical Genomics	Alpha – 7	410	Alpha $-1,7$	Alpha – 0	59	Alpha – 0
(снижение заболеваемо-		Beta – 39		Beta -9.5	Beta – 6		Beta – 10,1
сти)		Gamma – 0		Gamma – 0	Gamma – 0		Gamma – 0
		Delta – 47		Delta – 11,4	Delta – 36		Delta – 61
Саудовская Аравия	Infectious Diseases, King Faisal	Alpha – 1	957	Alpha $-0,1$	Alpha – 0	0	Alpha – 0
(снижение заболеваемо-	Hospital Research Center	Beta – 1		Beta -0.1	Beta – 0		Beta – 0
сти)		Gamma – 0		Gamma – 0	Gamma – 0		Gamma – 0
		Delta – 0		Delta – 0	Delta – 0		Delta – 0
Северная Македония	Institute of Public Health of Re-	Alpha – 249	600	Alpha – 41,5	Alpha – 0	2	Alpha – 0
(рост	public of North Macedonia Labora-	Beta – 1		Beta -0.1	Beta – 0		Beta – 0
заболеваемости)	tory of Virology and Molecular Di-	Gamma – 0		Gamma – 0	Gamma – 0		Gamma – 0
	agnostics	Delta – 2		Delta – 0,3	Delta – 2		Delta – 100
Северные Марианские		Alpha – 1	63	Alpha - 1,5	Alpha – 0	0	Alpha – 0
острова		Beta – 0		Beta – 0	Beta – 0		Beta – 0
		Gamma – 0		Gamma – 0	Gamma – 0		Gamma – 0
		Delta – 0		Delta – 0	Delta – 0		Delta – 0
Сенегал	IRESSEF GENOMICS LAB	Alpha – 24	456	Alpha $-5,2$	Alpha – 0	0	Alpha – 0
(рост заболеваемости)		Beta – 0		Beta -0	Beta – 0		Beta – 0
		Gamma – 0		Gamma – 0	Gamma – 0		Gamma – 0

		Delta – 14		Delta – 3	Delta – 0		Delta – 0
Сент-Люсия	Carrington Lab, Department of	Alpha – 20	25	Alpha – 80	Alpha – 0	0	Alpha – 0
(снижение заболеваемо-	PreClinical Sciences	Beta – 0		Beta – 0	Beta – 0		Beta – 0
сти)		Gamma – 0		Gamma – 0	Gamma – 0		Gamma – 0
		Delta – 0		Delta – 0	Delta – 0		Delta – 0
Сербия	Institute of microbiology and Im-	Alpha – 23	257	Alpha – 9	Alpha – 0	2	Alpha – 0
(рост заболеваемости)	munology, Faculty of Medicine,	Beta – 0		Beta – 0	Beta -0		Beta – 0
	University of Belgrade	Gamma – 0		Gamma – 0	Gamma – 0		Gamma – 0
		Delta – 2		Delta -0.7	Delta – 2		Delta – 100
Сингапур	National Public Health Laboratory,	Alpha – 189	3446	Alpha – 5,4	Alpha – 2	247	Alpha -0.8
(рост заболеваемости)	National Centre for Infectious Dis-	Beta – 96		Beta -2.8	Beta – 1		Beta -0.4
	eases	Gamma – 8		Gamma – 0,2	Gamma – 0		Gamma – 0
		Delta – 1052		Delta – 30,5	Delta – 187		Delta – 75,7
Синт-Мартен	National Institute for Public Health	Alpha – 334	413	Alpha – 80,8	Alpha – 27	68	Alpha – 39,7
(снижение заболеваемо-	and the Environment (RIVM)	Beta – 1		Beta -0.2	Beta – 0		Beta – 0
сти)		Gamma – 0		Gamma – 0	Gamma – 0		Gamma – 0
		Delta – 1		Delta -0.2	Delta – 0		Delta – 0
Словакия	Faculty of Natural Sciences, Co-	Alpha – 4206	4556	Alpha – 92,3	Alpha – 86	143	Alpha – 60,1
(рост заболеваемости)	menius University	Beta – 28		Beta -0.6	Beta – 0		Beta – 0
		Gamma – 0		Gamma – 0	Gamma – 0		Gamma – 0
		Delta – 26		Delta – 0,5	Delta – 19		Delta – 13,2
Словения	Institute of Microbiology and Im-	Alpha – 7930	15575	Alpha – 51	Alpha – 29	63	Alpha – 46
(рост заболеваемости)	munology, Faculty of Medicine,	Beta – 31		Beta -0.2	Beta – 0		Beta – 0
	University of Ljubljana	Gamma – 4		Gamma –	Gamma – 0		Gamma – 0
		Delta – 14		0,02	Delta – 1		Delta – 1,5
				Delta – 0,08			
Сомали	African Centre of Excellence for	Alpha – 6	31	Alpha – 19,3	Alpha – 0	0	Alpha – 0
(рост	Genomics of Infectious Diseases	Beta – 1		Beta $-3,2$	Beta -0		Beta – 0
заболеваемости)	(ACEGID), Redeemer's University	Gamma – 0		Gamma – 0	Gamma – 0		Gamma – 0
		Delta – 0		Delta – 0	Delta – 0		Delta – 0
Суринам	National Institute for Public Health	Alpha – 15	338	Alpha – 4,4	Alpha – 0	0	Alpha – 0
(рост заболеваемости)	and the Environment (RIVM)	Beta -5		Beta $-1,4$	Beta – 0		Beta – 0
		Gamma – 108		Gamma – 32	Gamma – 0		Gamma – 0

		Delta – 0		Delta – 0	Delta – 0		Delta – 0
США	Colorado Department of Public	Alpha –	63533	Alpha – 32	Alpha – 2742	80886	Alpha – 19,3
(рост заболеваемости)	Health & Environment.	201231	3	Beta -0.4	Beta – 7		Beta -0.05
	Maine Health and Environmental	Beta – 2342		Gamma – 3,1	Gamma –		Gamma – 1,1
	Testing Laboratory.	Gamma –		Delta $-2,3$	898		Delta – 9,3
	California Department of Public	20106			Delta – 7593		
	Health. UCSD EXCITE.	Delta – 15048					
Таиланд	COVID-19 Network Investigations	Alpha – 736	1906	Alpha – 38,6	Alpha – 31	65	Alpha – 47,7
(рост заболеваемости)	(CONI) Alliance	Beta – 40		Beta $-2,1$	Beta – 0		Beta -0
-		Gamma – 0		Gamma – 0	Gamma – 0		Gamma - 0
		Delta – 144		Delta – 7,5	Delta – 27		Delta – 41,5
Тайвань	Microbial Genomics Core Lab, Na-	Alpha – 32	218	Alpha – 14,6	Alpha – 0	0	Alpha – 0
	tional Taiwan University Centers	Beta – 3		Beta – 1,3	Beta – 0		Beta -0
	of Genomic and Precision Medi-	Gamma – 4		Gamma – 1,8	Gamma – 0		Gamma - 0
	cine	Delta – 1		Delta - 0,4	Delta – 0		Delta – 0
Тёркс и Кайкос	Carrington Lab, Department of	Alpha – 5	10	Alpha – 50	Alpha – 0	0	Alpha – 0
(Preclinical Sciences, Faculty of	Beta – 0		Beta -0	Beta -0		Beta -0
(снижение заболеваемо-	Medical Sciences, The University	Gamma – 0		Gamma – 0	Gamma – 0		Gamma - 0
сти)	of the West Indies, St Augustine	Delta – 0		Delta – 0	Delta – 0		Delta – 0
	Campus						
Того	Unité Mixte Internationale Trans-	Alpha – 21	125	Alpha – 16,8	Alpha – 0	0	Alpha – 0
(рост заболеваемости)	VIHMI (UMI 233 IRD – U1175	Beta – 2		Beta – 1,6	Beta – 0		Beta -0
,	INSERM – Université de Montpel-	Gamma – 0		Gamma – 0	Gamma – 0		Gamma – 0
	lier) IRD (Institut de recherche	Delta – 0		Delta – 0	Delta – 0		Delta – 0
	pour le développement)						
Тринидад и Тобаго	Carrington Lab, Department of	Alpha – 9	485	Alpha – 1,8	Alpha – 0	2	Alpha – 0
(стабилизация заболевае-	PreClinical Sciences, Faculty of	Beta – 0		Beta -0	Beta -0		Beta -0
мости)	Medical Sciences, The University	Gamma – 250		Gamma –	Gamma – 0		Gamma – 0
	of the West Indies	Delta – 0		51,5	Delta – 0		Delta – 0
				Delta – 0			
Тунис	Laboratoire de 40linique 40linique	Alpha – 7	132	Alpha – 5,3	Alpha – 0	0	Alpha – 0
(рост заболеваемости)	 Institut Pasteur de Tunis 	Beta -2		Beta – 1,5	Beta – 0		Beta -0

		Gamma – 0		Gamma – 0	Gamma – 0		Gamma – 0
		Delta – 1		Delta -0.7	Delta – 0		Delta – 0
Турция	Ministry of Health Turkey	Alpha – 606	5471	Alpha – 11	Alpha – 0	0	Alpha – 0
(рост		Beta – 596		Beta – 10,8	Beta – 0		Beta -0
заболеваемости)		Gamma – 27		Gamma – 0,5	Gamma – 0		Gamma – 0
		Delta – 8		Delta – 0,1	Delta – 0		Delta – 0
Уганда	MRC/UVRI & LSHTM Uganda	Alpha – 17	496	Alpha $-3,4$	Alpha – 0	16	Alpha – 0
(снижение заболеваемо-	Research Unit	Beta – 13		Beta $-2,6$	Beta – 0		Beta -0
сти)		Gamma – 0		Gamma – 0	Gamma – 0		Gamma – 0
		Delta – 38		Delta – 7,6	Delta – 0		Delta – 0
Украина	Department of Respiratory and	Alpha – 52	178	Alpha – 29,2	Alpha – 0	3	Alpha – 0
(снижение заболеваемо-	other Viral Infections of	Beta – 0		Beta – 0	Beta – 0		Beta -0
сти)	L.V.Gromashevsky Institute of Ep-	Gamma – 0		Gamma – 0	Gamma – 0		Gamma – 0
	idemiology & Infectious Diseases	Delta – 2		Delta – 1,1	Delta – 2		Delta – 66,6
	NAMS of Ukraine, JSC "Farmak"						
Уоллис и Футуна	CNR Virus des Infections Res-	Alpha – 10	10	Alpha – 100	Alpha – 0	0	Alpha – 0
(стабилизация заболевае-	piratoires - France SUD	Beta – 0		Beta – 0	Beta – 0		Beta -0
мости)		Gamma – 0		Gamma – 0	Gamma – 0		Gamma – 0
мости)		Delta – 0		Delta – 0	Delta – 0		Delta – 0
Уругвай	Centro de Innovación en Vigilancia	Alpha – 0	555	Alpha – 0	Alpha – 0	0	Alpha – 0
(стабилизация заболевае-	Epidemiológica (CiVE), Institut	Beta -0		Beta – 0	Beta – 0		Beta -0
мости)	Pasteur Montevideo, Uruguay	Gamma – 171		Gamma –	Gamma – 0		Gamma – 0
		Delta – 0		30,8	Delta – 0		Delta – 0
				Delta – 0			
Фарерские острова	Faroese National Reference Labor-	Alpha – 2	42	Alpha $-4,7$	Alpha – 0	0	Alpha – 0
(снижение заболеваемо-	atory for Fish and Animal Diseases	Beta – 0		Beta – 0	Beta – 0		Beta -0
сти)		Gamma – 1		Gamma – 2,4	Gamma – 0		Gamma – 0
		Delta – 0		Delta – 0	Delta – 0		Delta – 0
Филиппины	Philippine Genome Center	Alpha – 1027	5305	Alpha – 19,3	Alpha – 0	0	Alpha – 0
(снижение		Beta – 1216		Beta – 23	Beta – 0		Beta -0
заболеваемости)		Gamma – 1		Gamma –	Gamma – 0		Gamma – 0
		Delta – 12		0,02	Delta – 0		Delta – 0
				Delta – 0,2			

Финляндия	Department of Virology, Faculty of	Alpha – 5865	11476	Alpha – 51,1	Alpha – 0	0	Alpha – 0
(рост заболеваемости)	Medicine, University of Helsinki	Beta – 1096		Beta – 9,5	Beta – 0		Beta -0
		Gamma – 2		Gamma –	Gamma – 0		Gamma – 0
		Delta – 126		0,01	Delta – 0		Delta – 0
				Delta - 1,1			
Франция	CNR Virus des Infections Res-	Alpha – 32208	46083	Alpha – 69,9	Alpha – 800	2685	Alpha – 29,8
(рост заболеваемости)	piratoires – France SUD	Beta – 2142		Beta – 4,6	Beta – 91		Beta -3.3
		Gamma – 434		Gamma – 0,9	Gamma –		Gamma – 5,5
		Delta – 1569		Delta $-3,4$	149		Delta – 40,3
					Delta – 1084		
Французская Гвиана	National Reference Center for Vi-	Alpha – 44	449	Alpha – 9,7	Alpha – 1	8	Alpha – 12,5
	ruses of Respiratory Infections, In-	Beta – 2		Beta -0.4	Beta – 0		Beta -0
	stitut Pasteur, Paris	Gamma – 238		Gamma – 53	Gamma – 6		Gamma – 75
		Delta – 1		Delta -0.2	Delta – 1		Delta – 12,5
Хорватия	Croatian Institute of Public Health	Alpha – 3941	4695	Alpha – 83,9	Alpha – 0	0	Alpha – 0
(стабилизация заболевае-		Beta – 41		Beta -0.8	Beta – 0		Beta -0
мости)		Gamma – 2		Gamma –	Gamma – 0		Gamma – 0
		Delta – 28		0,04	Delta – 0		Delta – 0
				Delta – 0,6			
Черногория	Charité Universitätsmedizin Berlin,	Alpha – 7	31	Alpha – 22,6	Alpha – 0	0	Alpha – 0
(рост заболеваемости)	Institut für Virologie	Beta – 0		Beta – 0	Beta – 0		Beta -0
		Gamma – 0		Gamma – 0	Gamma – 0		Gamma – 0
		Delta – 0		Delta – 0	Delta – 0		Delta – 0
Чехия	The National Institute of Public	Alpha – 3831	5351	Alpha – 71,5	Alpha – 36	80	Alpha – 45
(рост заболеваемости)	Health	Beta – 71		Beta – 1,3	Beta – 0		Beta -0
		Gamma – 17		Gamma – 0,3	Gamma – 0		Gamma – 0
		Delta – 144		Delta $-2,7$	Delta – 29		Delta – 36,25
Чили	Instituto de Salud Publica de Chile	Alpha – 155	4774	Alpha – 3,2	Alpha – 8	504	Alpha – 1,5
(снижение заболеваемо-		Beta – 4		Beta -0.08	Beta – 1		Beta -0.2
сти)		Gamma – 1718		Gamma – 36	Gamma –		Gamma – 58,9
		Delta – 3		Delta – 0,06	297		Delta -0.4
					Delta – 2		
Швейцария	Department of Biosystems Science	Alpha – 21690	45882	Alpha – 47,2	Alpha – 194	574	Alpha – 33,8

/ ~	1D ' ' EMIL 7" ' 1	D . 226	1	D . 0.5	D		D . 0.7
(рост заболеваемости)	and Engineering, ETH Zürich.	Beta – 226		Beta -0.5	Beta – 4		Beta -0.7
		Gamma – 170		Gamma – 0,3	Gamma – 9		Gamma – 1,5
		Delta – 515		Delta – 1,1	Delta – 237		Delta – 41,2
Швеция	The Public Health Agency of Swe-	Alpha – 56325	75066	Alpha – 75	Alpha – 916	2028	Alpha – 45,1
(снижение заболеваемо-	den	Beta – 2317		Beta – 0	Beta – 10		Beta -0.4
сти)		Gamma – 87		Gamma – 0,1	Gamma – 6		Gamma – 0,3
		Delta – 1727		Delta $-2,3$	Delta – 586		Delta -28,9
Шри-Ланка	Centre for Dengue Research and	Alpha – 321	636	Alpha - 50,4	Alpha – 65	104	Alpha – 62,5
(рост заболеваемости)	AICBU, Department of Immunolo-	Beta – 4		Beta -0.6	Beta -0		Beta -0
	gy and Molecular Medicine	Gamma – 0		Gamma – 0	Gamma – 0		Gamma – 0
		Delta – 20		Delta $-3,1$	Delta – 8		Delta – 7,7
Центральноафрикан-	Pathogen Sequencing Lab, Nation-	Alpha – 2	11	Alpha – 18,2	Alpha – 0	0	Alpha – 0
ская Республика	al Institute for Biomedical Re-	Beta -0		Beta – 0	Beta -0		Beta -0
(снижение	search (INRB)	Gamma – 0		Gamma – 0	Gamma – 0		Gamma – 0
заболеваемости)		Delta – 0		Delta – 0	Delta – 0		Delta – 0
Эквадор	Instituto Nacional de Investi-	Alpha – 147	877	Alpha – 16,7	Alpha – 4	73	Alpha – 5,4
(рост	gaciónenSaludPública, INSPI	Beta – 1		Beta -0.2	Beta -0		Beta -0
заболеваемости)		Gamma – 53		Gamma – 6	Gamma – 5		Gamma – 6,8
		Delta – 10		Delta - 1,1	Delta – 10		Delta – 13,7
Экваториальная Гвинея	Swiss Tropical and Public Health	Alpha – 1	191	Alpha -0.5	Alpha – 0	0	Alpha – 0
(снижение	Institute	Beta – 43		Beta – 22,5	Beta -0		Beta -0
заболеваемости)		Gamma – 0		Gamma – 0	Gamma – 0		Gamma - 0
		Delta – 0		Delta – 0	Delta – 0		Delta – 0
Эсватини	Nhlangano Health Centre (National	Alpha – 0	33	Alpha – 0	Alpha – 0	0	Alpha – 0
(рост заболеваемости)	Institute for Communicable Dis-	Beta – 26		Beta – 78,8	Beta – 0		Beta -0
	eases of the National Health La-	Gamma – 0		Gamma – 0	Gamma – 0		Gamma - 0
	boratory Service)	Delta – 0		Delta – 0	Delta – 0		Delta – 0
Эстония	Laboratory of Communicable Dis-	Alpha – 2842	4129	Alpha – 68,8	Alpha – 0	0	Alpha – 0
(рост	eases (Estonia);	Beta – 37		Beta -0.9	Beta – 0		Beta -0
заболеваемости)	Eurofins Genomics Europe Se-	Gamma – 0		Gamma – 0	Gamma – 0		Gamma – 0
,	quencing GmbH	Delta – 0		Delta – 0	Delta – 0		Delta – 0
Эфиопия		Alpha – 3	19	Alpha – 15,7	Alpha – 0	0	Alpha – 0
(рост	International Centre for Genetic	Beta – 0		Beta – 0	Beta – 0		Beta -0

заболеваемости)	Engineering and Biotechnology	Gamma – 0		Gamma – 0	Gamma – 0		Gamma – 0
	(ICGEB) and ARGO Open Lab for	Delta – 0		Delta – 0	Delta – 0		Delta – 0
	Genome Sequencing						
ЮАР	KRISP, KZN Research Innovation	Alpha – 166	11296	Alpha – 1,4	Alpha – 6	568	Alpha – 1
(снижение заболеваемо-	and Sequencing Platform.	Beta – 6162		Beta – 54,5	Beta – 44		Beta $-7,7$
сти)		Gamma – 0		Gamma – 0	Gamma – 0		Gamma – 0
		Delta – 972		Delta – 8,6	Delta – 366		Delta – 64,4
Южная Корея	Division of Emerging Infectious	Alpha – 589	8772	Alpha – 6,7	Alpha – 0	183	Alpha – 0
(рост заболеваемости)	Diseases, Bureau of Infectious Dis-	Beta – 18		Beta – 0,2	Beta – 0		Beta – 0
	eases Diagnosis Control, Korea	Gamma – 3		Gamma –	Gamma – 0		Gamma – 0
	Disease Control and Prevention	Delta – 25		0,03	Delta – 0		Delta – 0
	Agency			Delta -0.2			
Южный Судан		Alpha – 1	59	Alpha – 1,7	Alpha – 0	0	Alpha – 0
(Beta - 3		Beta – 5	Beta -0		Beta – 0
(снижение заболеваемо-		Gamma – 0		Gamma – 0	Gamma – 0		Gamma – 0
сти)		Delta – 4		Delta – 6,7	Delta – 0		Delta – 0
Ямайка	Carrington Lab, Department of	Alpha – 15	29	Alpha – 51,7	Alpha – 0	0	Alpha – 0
(снижение	PreClinical Sciences, Faculty of	Beta – 0		Beta – 0	Beta – 0		Beta – 0
заболеваемости)	Medical Sciences, The University	Gamma – 0		Gamma – 0	Gamma – 0		Gamma – 0
	of the West Indies	Delta – 0		Delta – 0	Delta – 0		Delta – 0
Япония	Pathogen Genomics Center, Na-	Alpha – 22383	61537	Alpha – 36,3	Alpha – 92	256	Alpha – 35,9
(рост	tional Institute of Infectious Dis-	Beta – 89		Beta -0.1	Beta – 6		Beta -2.3
заболеваемости)	eases	Gamma – 111		Gamma – 0,1	Gamma – 2		Gamma – 0,7
· · · · · · · · · · · · · · · · · · ·		Delta – 573		Delta – 0,9	Delta – 122		Delta – 47,6

Таблица 2 — Количество депонированных геномов вариантов **Epsilon** GH/452R.V1 **(B.1.429/B.1.427)**, **Eta** G/484K.V3 **(B.1.525)**, **Theta** GR/1092K.V1 **(P.3)**, **Iota** GH/253G.V1 **(B.1.526)**, **Kappa** G/452R.V3 **(B.1.617.1)**, **Lambda** GR/452Q.V1 **(C.37)** вируса SARS-CoV-2 в базе GISAID.

			епонирова ARS-CoV	анных геномов	В том числе количество геномов, депонированных за последние 4 недели (15.05.21 – 11.06.21)			
Страна	Учреждение, проводившее секвениро- вание	Варианты: Epsilon (В.1.429/В.1.427) Eta (В.1.525) Theta (Р.3) Iota (В.1.526) Карра (В.1.617.1) Lambda (С.37)	Всего	Процент геномов, относящихся к варианту: Epsilon (В.1.429/В.1.427) Eta (В.1.525) Theta (Р.3) Iota (В.1.526) Карра (В.1.617.1) Lambda (С.37)	Варианты: Epsilon (В.1.429/В.1.427) Eta (В.1.525) Theta (Р.3) Iota (В.1.526) Карра (В.1.617.1) Lambda (С.37)	Все-го	Процент геномов, относящихся к варианту: Epsilon (В.1.429/В.1.427) Eta (В.1.525) Theta (Р.3) Iota (В.1.526) Карра (В.1.617.1) Lambda (С.37)	
Ангилья (стабилизация заболеваемости)	Carrington Lab, Department of PreClinical Sciences, Fac- ul-ty of Medical Sciences, The University of the West Indies	Epsilon - 1 Iota –1	5	Epsilon – 20,0 Iota –20,0	Epsilon - 0 Iota –0	0	Epsilon – 0 Iota –0	
Ангола (рост заболева- емости)	KRISP, KZN Research Innovation and Sequencing Platform	Eta – 7 Theta – 2 Kappa –24	730	Eta – 1,0 Theta – 0,2 Kappa – 3,2	$\begin{aligned} & \text{Eta} - 0 \\ & \text{Theta} - 0 \\ & \text{Kappa} - 0 \end{aligned}$	0	Eta - 0 $Theta - 0$ $Kappa - 0$	
Антигуа и Бар- буда (стабилизация заболеваемости)	Carrington Lab, Department of Preclinical Sciences, Facul- ty of Medical Sciences, The University of the West Indies, St Augustine Campus	Epsilon - 1 Eta – 0 Iota –1 Lambda -0	11	Epsilon – 9,1 Eta – 0 Iota –9,1 Lambda -0	Epsilon - 0 Eta - 0 Iota -0 Lambda -0	0	Epsilon – 0 Eta – 0 Iota –0 Lambda -0	

Аргентина (снижение забо- леваемости)	Instituto Nacional EnfermedadesInfecciosasC.G.Malbran	Epsilon - 28 Eta – 1 Iota –8 Lambda -87	4219	Epsilon – 0,6 Eta – 0,02 Iota –0,2 Lambda -2,0	Epsilon - 0 Eta – 0 Iota –0 Lambda -0	0	Epsilon – 0 Eta – 0 Iota –0 Lambda -0
Аруба (стабилизация заболеваемости)	National Institute for Public Health and the Environment (RIVM)	Epsilon - 57 Iota –104 Lambda -2	1200	Epsilon – 4,7 Iota –8,7 Lambda -0,1	Epsilon - 0 Iota –2 Lambda -0	37	Epsilon - 0 Iota –5,4 Lambda -0
Австралия (рост заболева- емости)	NSW Health Pathology – Institute of Clinical Pathology and Medical Research; Westmead Hospital; University of Sydney	Epsilon - 20 Eta - 15 Theta - 4 Iota -6 Kappa - 112 Lambda -1	18471	Epsilon – 0,1 Eta – 0,1 Theta – 0,02 Iota –0,03 Kappa – 0,6 Lambda -0,005	Epsilon - 0 Eta - 0 Theta - 1 Iota -0 Kappa - 12 Lambda -0	385	Epsilon - 0 Eta - 0 Theta - 0,2 Iota -0 Kappa - 3,1 Lambda -0
Австрия (рост заболеваемости)	Bergthaler laboratory, CeMM Research Center for Molecu- lar Medicine of the Austrian Academy of Sciences	Eta – 17 Iota –2 Kappa – 1	16417	Eta – 0,1 Iota –0,01 Kappa – 0,006	Eta – 0 Iota –0 Kappa – 0	390	Eta – 0 Iota –0 Kappa – 0
Бангладеш (рост заболева- емости)	Child Health Research Foundation	Eta – 18	1877	Eta – 0,9	Eta – 1	64	Eta – 1,5
Барбадос (рост заболеваемости)	Carrington Lab, Department of PreClinical Sciences, Building 36, First Floor Bio- chemistry Unit, Fac-ulty of Medical Sciences, The Uni- versity of the West Indies	Epsilon - 1	28	Epsilon – 3,5	Epsilon - 0	0	Epsilon - 0
Бахрейн (снижение забо- леваемости)	Communicable Disease Laboratory, Public Health Directorate	Карра – 8	268	Kappa – 2,9	Kappa – 0	5	Карра –0

Бельгия (рост заболева-емости)	KU Leuven, Rega Institute, Clinical and Epidemiological Virology	Epsilon - 1 Eta – 82 Iota –8 Kappa – 16 Lambda -1	31054	Epsilon – 0,003 Eta – 0,2 Iota –0,02 Kappa – 0,05 Lambda -0,003	Epsilon - 0 Eta – 1 Iota –0 Kappa – 0 Lambda -1	1073	Epsilon - 0 Eta - 0,1 Iota -0 Kappa - 0 Lambda -0,1
Беларусь (рост заболеваемости)	Laboratory for HIV and op- portunistic infections diagno- sis The Republican Research and Practical Center for Epi- demiology and Microbiology (RRPCEM)	Eta – 1	44	Eta – 2,2	Eta – 0	0	Eta – 0
Боливия (снижение забо- леваемости)	Laboratory of Respiratory Viruses and Measles, Oswaldo Cruz Institute, FIOCRUZ	Lambda -1	66	Lambda -1,5	Lambda -0	0	Lambda -0
Ботсвана (стабилизация заболеваемости)	Botswana Harvard HIV Reference Laboratory	Kappa – 2	609	Kappa – 0,3	Kappa – 1	186	Kappa – 0,5
Бразилия (снижение заболеваемости)	Instituto Adolfo Lutz, Interdiciplinary Procedures Center, Strategic Laboratory	Eta – 1 Lambda -4	22011	Eta – 0,004 Lambda -0,02	Eta – 0 Lambda -0	435	Eta – 0 Lambda -0
Британские Виргинские острова (стабилизация заболеваемости)	Caribbean Public Health Agency	Epsilon - 1 Iota –1	11	Epsilon – 9,1 Iota –9,1	Epsilon - 0 Iota –0	0	Epsilon - 0 Iota –0
Великобрита- ния (рост заболева- емости)	COVID-19 Genomics UK (COG-UK) Consortium. Wellcome Sanger Institute for the COVID-19 Genomics UK (COG-UK) consortium.	Epsilon - 21 Eta - 518 Theta - 7 Iota -43 Kappa - 517 Lambda -7	525618	Epsilon – 0,003 Eta – 0,1 Theta – 0,001 Iota –0,008 Kappa – 0,1 Lambda -0,001	Epsilon - 0 Eta - 1 Theta - 0 Iota -0 Kappa - 0 Lambda -1	5128 0	Epsilon - 0 $Eta - 0,002$ $Theta - 0$ $Iota - 0$ $Kappa - 0$ $Lambda - 0,002$

Венесуэла (снижение заболеваемости)	Laboratorio de Virología Mo- lecular	Iota –1	148	Iota -0,6	Iota –0	0	Iota –0
Габон (рост заболеваемости)	Centre de Recherches Médi- cales de Lambaréné (CERMEL)	Eta – 1	205	Eta – 0,5	Eta – 0	0	Eta – 0
Гана (рост заболева- емости)	Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Patho- gens (WACCBIP), University of Ghana	Eta – 53 Iota –2 Kappa – 5	819	Eta – 6,4 Iota –0,2 Kappa – 0,6	Eta – 1 Iota –0 Kappa – 0	11	Eta – 9,1 Iota –0 Kappa – 0
Гамбия (рост заболева- емости)	MRCG at LSHTM Genomics lab	Eta – 1	476	Eta – 0,2	Eta – 0	0	Eta – 0
Гваделупа (стабилизация заболеваемости)	National Reference Center for Viruses of Respiratory Infec- tions, Institut Pasteur, Paris	Epsilon - 2 Eta – 2 Iota –1 Kappa – 2	152	Epsilon – 1,3 Eta – 1,4 Iota –0,7 Kappa –1,3	Epsilon - 0 Eta – 0 Iota –0 Kappa – 0	8	Epsilon - 0 Eta - 0 Iota -0 Kappa - 0
Гватемала (рост заболева- емости)	Asociación de Salud Inte- gral/Clínica Familiar Luis Ángel García	Epsilon - 7 Eta – 0 Iota –0 Kappa – 0	309	Epsilon – 2,2 Eta – 0 Iota –0 Kappa –0	Epsilon - 0 Eta – 0 Iota –0 Kappa – 0	0	Epsilon - 0 Eta - 0 Iota -0 Kappa - 0
Гвинея (рост заболева- емости)	Centre de Recherche et de Formation en Infectiologie Guinée	Eta – 5	40	Eta – 12,5	Eta – 0	0	Eta – 0

Германия (рост заболева- емости)	Charité Universitätsmedizin Berlin, InstitutfürVirologie. Institute of infectious medi- cine & hospital hygiene, CaSe-Group.	Epsilon - 10 Eta - 738 Theta - 11 Iota -57 Kappa - 106 Lambda -100	137385	Epsilon – 0,007 Eta – 0,5 Theta – 0,008 Iota –0,04 Kappa – 0,07 Lambda -0,07	Epsilon - 0 Eta - 10 Theta - 1 Iota -3 Kappa - 5 Lambda -3	3132	Epsilon - 0 $Eta - 0,3$ $Theta - 0,03$ $Iota - 0,1$ $Kappa - 0,1$ $Lambda - 0,1$
Гренада (стабилизация заболеваемости)	The Caribbean Public Health Agency	Iota –2	7	Iota -28,5	Iota –0	0	Iota –0
Греция (рост заболева- емости)	Greek Genome Center, Biomedical Research Foundation of the Academy of Athens (BRFAA)	Eta – 2 Kappa – 1	7929	Eta – 0,02 Kappa – 0,01	Eta – 0 Kappa –0	0	Eta – 0 Kappa – 0
Гуам (рост заболеваемости)	Centers for Disease Control and Prevention Division of Viral Diseases, Pathogen Dis- covery	Epsilon - 8	78	Epsilon – 10,2	Epsilon - 0	0	Epsilon - 0
Дания (рост заболева- емости)	Albertsen lab, Department of Chemistry and Bioscience, Aalborg University. Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut.	Epsilon - 37 Eta – 613 Iota –9 Kappa – 28 Lambda -1	116328	Epsilon – 0,03 Eta – 0,5 Iota –0,007 Kappa – 0,02 Lambda -0,001	Epsilon - 0 Eta - 0 Iota -0 Kappa - 0 Lambda -0	2186	Epsilon - 0 Eta - 0 Iota - 0 Kappa - 0 Lambda - 0
Доминикан- ская Республи- ка (стабилизация заболеваемости)	Respiratory Viruses Branch, Centers for Disease Control and Prevention, USA	Epsilon - 1 Iota –22 Lambda -1	130	Epsilon –0,7 Iota –16,9 Lambda -1,3	Epsilon –0 Iota –2 Lambda -0	3	Epsilon –0 Iota –66,7 Lambda -0

Египет (снижение забо- леваемости)	Main Chemical Laboratories Egypt Army	Lambda -8	957	Lambda -0,8	Lambda -0	0	Lambda -0
Замбия (снижение заболеваемости)	University of Zambia, School of Veterinary Medicine	Kappa –1	692	Kappa –0,1	Карра –0	0	Карра –0
Зимбабве (рост заболева- емости)	National Microbiology Reference Laboratory (Quadram Institute Bio-science)	Lambda -1	558	Lambda -0,1	Lambda -0	0	Lambda -0
Израиль (рост заболева- емости)	Central Virology Laboratory, Israel Ministry of Health	Epsilon - 10 Eta – 17 Iota –9 Lambda -25	12781	Epsilon – 0,07 Eta – 0,1 Iota –0,07 Lambda -0,2	Epsilon - 0 Eta - 0 Iota -0 Lambda -0	568	Epsilon - 0 Eta -0 Iota -0 Lambda -0
Индия (снижение забо- леваемости)	Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS). CSIR-Centre for Cellular and Molecular Biology	Epsilon - 1 Eta – 226 Iota –3 Kappa – 3684	31014	Epsilon – 0 Eta – 0,7 Iota –0,01 Kappa – 11,8	Epsilon – 0 Eta – 0 Iota –0 Kappa – 2	337	Epsilon - 0 Eta – 0 Iota –0 Kappa – 0,6
Индонезия (рост заболева- емости)	National Institute of Health Research and Development	Eta – 5 Iota –2 Kappa – 2	2623	Eta – 0,2 Iota –0,08 Kappa – 0,07	Eta – 0 Iota –0 Kappa – 0	250	Eta – 0 Iota –0 Kappa –0
Иордания (рост заболеваемости)	Andersen lab at Scripps Research, CA, USA	Eta – 2 Kappa – 4	662	Eta – 0,3 Kappa – 0,6	Eta – 0 Kappa – 0	0	Eta – 0 Kappa – 0

Ирландия (рост заболева- емости)	National Virus Reference Laboratory	Epsilon - 7 Eta – 72 Iota –13 Kappa – 170	18494	Epsilon – 0,04 Eta – 0,4 Iota –0,07 Kappa – 1	Epsilon - 0 Eta - 0 Iota -0 Kappa - 8	616	Epsilon - 0 Eta - 0 Iota -0 Kappa - 1,2
Испания (рост заболева- емости)	Hospital Universitario 12 de Octubre	Epsilon - 5 Eta - 181 Iota -125 Kappa - 5 Lambda -55	39056	Epsilon – 0,01 Eta – 0,4 Iota –0,3 Kappa – 0,01 Lambda -0,1	Epsilon - 0 Eta - 6 Iota -16 Kappa - 0 Lambda -4	1574	Epsilon - 0 $Eta - 0,4$ $Iota - 1$ $Kappa - 0$ $Lambda - 0,2$
Италия (рост заболева- емости)	Army Medical Center, Scientific Department, Virology Laboratory	Epsilon - 2 Eta – 400 Iota –11 Kappa – 9 Lambda -11	35119	Epsilon – 0,005 Eta – 1,1 Iota –0,03 Kappa – 0,02 Lambda -0,03	Epsilon - 0 Eta – 22 Iota –3 Kappa – 0 Lambda -6	1826	Epsilon - 0 Eta - 1,2 Iota -0,1 Kappa - 0 Lambda -0,3
Камбоджа (стабилизация заболеваемости)	Virology Unit, Institut Pasteur du Cambodge	Epsilon - 2 Kappa – 1	451	Epsilon – 0,4 Kappa –0,3	Epsilon - 0 Kappa – 0	98	Epsilon - 0 Kappa – 0
Камерун (стабилизация заболеваемости)	CREMER(Centre de Recherchers sur les Maladies Emergentes et Réémergentes)	Epsilon - 3 Eta - 7 Lambda -1	204	Epsilon – 1,4 Eta – 3,4 Lambda -0,5	Epsilon - 0 Eta - 0 Lambda -0	0	Epsilon - 0 Eta - 0 Lambda -0
Канада (снижение забо- леваемости)	Laboratoire de santé publique du Québec	Epsilon - 326 Eta - 1415 Iota –160 Kappa – 266 Lambda -4	54294	Epsilon – 0,6 Eta – 2,6 Iota –0,3 Kappa – 0,5 Lambda -0,007	Epsilon - 0 Eta - 0 Iota -0 Kappa - 0 Lambda -0	0	Epsilon - 0 Eta - 0 Iota -0 Kappa - 0 Lambda -0
Катар (рост заболева- емости)	Ministry of Public Health / Hamad Medical Corporation	Epsilon - 11 Eta - 2 Kappa – 10	2910	Epsilon – 0,5 Eta – 0,06 Kappa – 0,3	Epsilon - 0 Eta - 0 Kappa – 0	0	Epsilon - 0 Eta - 0 Kappa – 0

Каймановы острова (рост заболева-емости)	Carrington Lab, Department of PreClinical Sciences, Building 36, First Floor Bio- chemistry Unit, Fac-ulty of Medical Sciences, The Uni- versity of the West Indies	Iota –1	10	Iota -10,0	Iota –0	0	Iota –0
Кения (рост заболева- емости)	KEMRI-Wellcome Trust Research Programme/KEMRI-CGMR-C Kilifi	Eta - 22 Kappa – 5	1739	Eta – 1,2 Kappa – 0,3	Eta - 0 Kappa – 0	0	Eta - 0 Kappa – 0
Китай (снижение заболеваемости)	National Institute for Viral Disease Control and Preven- tion	Theta – 10 Iota –1 Kappa – 11	3446	Theta – 0,3 Iota –0,03 Kappa – 0,3	Theta – 0 Iota –0 Kappa – 0	67	Theta – 0 Iota –0 Kappa – 0
Колумбия (снижение забо- леваемости)	Instituto Nacional de Salud- Dirección de Investigación en Salud Pública	Epsilon - 2 Iota –123 Lambda -20	1846	Epsilon – 0,1 Iota –6,6 Lambda -1,0	Epsilon - 0 Iota –3 Lambda -0	22	Epsilon - 0 Iota –13,6 Lambda -0
Коста-Рика (стабилизация заболеваемости)	Inciensa, Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud	Epsilon - 12 Eta - 4 Iota -5	696	Epsilon – 1,7 Eta – 0,6 Iota –0,7	Epsilon - 0 Eta - 0 Iota -0	12	Epsilon - 0 Eta - 0 Iota -0
Кот-д'Ивуар (снижение заболеваемости)	Molecular diagnostic unit for viral haemorrhagic fevers and emerging viruses, Bouaké CHU Laboratory	Eta - 10	145	Eta – 7,0	Eta - 0	0	Eta - 0
Кувейт (снижение забо- леваемости)	Virology Unit, Department of Mi-crobiology, Faculty of Medicine, Kuwait	Eta – 5 Kappa –1	101	Eta – 4,9 Kappa –1,0	Eta – 0 Kappa –0	66	Eta -0 Kappa –0
Кюрасао (стабилизация заболеваемости)	Dutch COVID-19 response team	Epsilon - 1 Iota –1 Kappa – 1 Lambda -1	428	Epsilon – 0,2 Iota –0,2 Kappa –0,2 Lambda -0,2	Epsilon - 0 Iota -0 Kappa - 0 Lambda -0	4	Epsilon - 0 Iota -0 Kappa - 0 Lambda -0

Латвия (снижение забо- леваемости)	Latvian Biomedical Research and Study Centre	Eta - 1	5483	Eta – 0,01	Eta - 0	0	Eta - 0
Литва (рост заболева- емости)	Vilnius University Hospital San-taros Klinikos, Center of Laborato-ry Medicine	Iota –8	13285	Iota -0,06	Iota –0	31	Iota –0
Люксембург (снижение забо- леваемости)	Laboratoire national de santé, Microbiology, Microbial Ge- nomics Platform	Eta - 52 Iota –6 Kappa – 6	9133	Eta – 0,5 Iota –0,06 Kappa – 0,06	Eta - 0 Iota -0 Kappa - 0	0	Eta – 0 Iota –0 Kappa – 0
Майотта	National Reference Center for Viruses of Respiratory Infec- tions, Institut Pasteur, Paris	Eta - 2	705	Eta – 0,3	Eta - 0	0	Eta - 0
Малайзия (рост заболева- емости)	Institute for Medical Research, Infectious Disease Research Centre, National Institutes of Health, Ministry of Health Malaysia	Eta - 3 Theta – 10 Kappa – 4	1447	Eta – 0,2 Theta – 0,7 Kappa – 0,2	Eta - 0 Theta – 0 Kappa – 0	18	Eta - 0 Theta - 0 Kappa - 0
Мали (рост заболева- емости)	University Clinical Research Center, University of Sciences Bundeswehr Institut of Microbiology Malaria Research and Training Center-Parasito	Eta - 3	37	Eta – 8,1	Eta - 0	0	Eta - 0
Мальта (рост заболева- емости)	Molecular Diagnostics Pathology Department Mater Dei Hospital Malta	Eta - 13	192	Eta – 6,7	Eta - 1	9	Eta – 11,1
Марокко (рост заболеваемости)	Laboratoire de Biotechnologie	Eta - 1	213	Eta – 0,5	Eta - 0	0	Eta - 0

Мексика (рост заболеваемости)	Instituto de diagnóstico y ReferenciaEpidemiologicos (INDRE)	Epsilon - 474 Iota –58 Kappa – 8 Lambda -115	14755	Epsilon – 3,2 Iota –0,4 Kappa – 0,05 Lambda -0,7	Epsilon - 12 Iota –4 Kappa – 0 Lambda -29	755	Epsilon – 1,5 Iota –0,5 Kappa – 0 Lambda -3,8
Мьянма (рост заболеваемости)	DSMRC	Kappa – 4	21	Kappa – 19,0	Kappa – 0	0	Kappa – 0
Непал (рост заболева- емости)	Molecular and Genomics Research Lab, Dhulikhel Hospital, Kathmandu University Hospital School of Public Health, The University of Hong Kong	Kappa – 2	110	Kappa – 1,8	Kappa – 0	0	Kappa – 0
Нигерия (рост заболеваемости)	African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Re- deemer's University	Eta - 267	864	Eta – 31,0	Eta - 0	1	Eta – 0
Нигер (снижение забо- леваемости)	National Reference Center for Viruses of Respiratory Infec- tions, Institut Pasteur, Paris	Eta - 6	24	Eta – 25,0	Eta - 0	0	Eta - 0
Нидерланды (рост заболева- емости)	National Institute for Public Health and the Environment (RIVM)	Epsilon - 5 Eta - 55 Theta - 7 Iota -5 Kappa -27 Lambda -1	40884	Epsilon -0.01 Eta -0.1 Theta -0.01 Iota -0.01 Kappa -0.06 Lambda -0.002	Epsilon - 0 Eta - 1 Theta - 0 Iota -0 Kappa - 11 Lambda -0	1307	Epsilon - 0 Eta - 0,07 Theta - 0 Iota -0 Kappa - 0,8 Lambda -0
Новая Зелан- дия (рост заболева- емости)	Institute of Environmental Science and Research (ESR)	Epsilon - 4 Theta - 3 Iota -1 Kappa - 4	1101	Epsilon – 0,4 Theta – 0,2 Iota –0,1 Kappa – 0,3	Epsilon - 0 Theta - 0 Iota -0 Kappa - 0	17	Epsilon - 0 Theta - 0 Iota -0 Kappa - 0

Норвегия (рост заболева- емости)	Norwegian Institute of Public Health, Department of Virology	Epsilon - 3 Eta - 81 Theta -2 Kappa - 1	12875	Epsilon - 0.02 $Eta - 0.7$ $Theta - 0.01$ $Kappa - 0$	Epsilon - 0 Eta - 0 Theta -0 Kappa - 0	522	Epsilon - 0 $Eta - 0$ $Theta - 0$ $Kappa - 0$
Перу (снижение забо- леваемости)	Laboratorio de Referencia Nacional de Biotecnología y Biología Molecular. Instituto Nacional de SaludPerú	Epsilon -2 Iota –16 Lambda -242	1531	Epsilon -0,1 Iota -1,1 Lambda -15,8	Epsilon -0 Iota -0 Lambda -0	1	Epsilon -0 Iota -0 Lambda -0
Польша (снижение заболеваемости)	genXone SA, Research & Development Laboratory	Eta – 10 Iota –1 Lambda -3	16845	Eta – 0,05 Iota –0,005 Lambda -0,01	Eta - 0 Iota –0 Lambda -1	268	Eta - 0 Iota -0 Lambda -0,3
Португалия (рост заболева- емости)	Instituto Nacional de Saude (INSA)	Eta - 28 Iota -2 Kappa - 9 Lambda -2	10853	Eta – 0,2 Iota –0,02 Kappa – 0,1 Lambda -0,01	Eta - 2 Iota -0 Kappa - 0 Lambda -1	1401	Eta - 0,1 Iota -0 Kappa - 0 Lambda -0,07
Республика Малави (рост заболеваемости)	KRISP, KZN Research Innovation and Sequencing Platform	Kappa – 2 Lambda -1	357	Kappa – 0,6 Lambda -0,4	Kappa – 0 Lambda -0	0	Kappa – 0 Lambda -0
Республика Маврикий (снижение забо- леваемости)	CNR Virus des Infections Res-piratoires – France SUD	Kappa – 3	133	Kappa – 2,2	Kappa – 0	0	Kappa – 0
Реюньон	Université de la Réunion Processus Infectieux en Mi- lieu Insulaire Tropical (UMR PIMIT)	Eta - 4	1302	Eta – 0,3	Eta - 0	67	Eta - 0
Россия (рост заболева- емости)	WHO National Influenza Centre Russian Federation	Eta - 3 Iota -5 Kappa - 4	5394	Eta – 0,05 Iota –0,1 Kappa – 0,1	Eta - 1 Iota -0 Kappa - 0	360	Eta – 0,2 Iota –0 Kappa – 0

Руанда (снижение забо- леваемости)	GIGA Medical Genomics	Eta - 5	402	Eta – 1,2	Eta - 0	58	Eta - 0
Румыния (рост заболеваемости)	National Institute of Infectious Diseases-Prof. Dr. Matei Bals Molecular Diagnostics Laboratory	Iota –2	1059	Iota -0,2	Iota –0	17	Iota –0
Северная Ма- кедония (рост заболеваемости)	Institute of Public Health of Republic of North Macedonia Laboratory of Virology and Molecular Diagnostics	Epsilon - 1	598	Epsilon - 0,1	Epsilon - 0	2	Epsilon - 0
Северные Марианские о-ва (снижение заболеваемости)	Commonwealth Healthcare Center	Epsilon - 1	63	Epsilon – 1,6	Epsilon - 0	0	Epsilon - 0
Сенегал (рост заболева- емости)	IRESSEF GENOMICS LAB	Eta - 1	422	Eta – 0,2	Eta - 0	0	Eta - 0
Сент-Китс и Невис (рост заболева-емости)	Carrington Lab, Department of Preclinical Sciences, Facul- ty of Medical Sciences, The University of the West Indies, St Augustine Campus	Lambda -10	13	Lambda – 77,0	Lambda -0	0	Lambda -0
Сингапур (рост заболева- емости)	National Public Health Laboratory, National Centre for Infectious Diseases	Epsilon - 4 Eta - 10 Theta - 3 Iota -7 Kappa - 59	3403	Epsilon - 0,1 $Eta - 0,3$ $Theta - 0,1$ $Iota - 0,2$ $Kappa - 1,7$	Epsilon - 0 Eta - 0 Theta – 0 Iota –0 Kappa – 0	259	Epsilon - 0 Eta - 0 Theta - 0 Iota -0 Kappa - 0

Синт-Мартен (рост заболева- емости)	National Institute for Public Health and the Environment (RIVM)	Epsilon - 1 Iota –17 Kappa – 2	413	Epsilon – 0,2 Iota –4,1 Kappa – 0,5	Epsilon - 0 Iota –0 Kappa – 0	119	Epsilon - 0 Iota -0 Kappa - 0
Словакия (рост заболева- емости)	Faculty of Natural Sciences, Come-nius University	Карра – 1	4479	Kappa – 0,02	Kappa – 0	176	Kappa – 0
Словения (рост заболева- емости)	Institute of Microbiology and Immunology, Faculty of Med- icine, University of Ljubljana	Eta - 52 Iota –4 Kappa – 1	14560	Eta – 0,3 Iota –0,02 Kappa – 0,007	Eta - 0 Iota -0 Kappa - 0	159	Eta - 0 Iota -0 Kappa - 0
Суринам (снижение забо- леваемости)	National Institute for Public Health and the Environment (RIVM)	Iota –9	338	Iota -2,6	Iota –0	0	Iota –0
США (рост заболева- емости)	Colorado Department of Public Health & Environment. Maine Health and Environmental Testing Laboratory. California Department of Public Health. UCSD EXCITE.	Epsilon - 49670 Eta – 1192 Theta – 14 Iota –46308 Kappa – 298 Lambda -649	603011	Epsilon – 8,2 Eta – 0,2 Theta – 0,002 Iota –7,7 Kappa – 0,04 Lambda -0,1	Epsilon - 26 Eta - 1 Theta - 0 Iota -243 Kappa - 2 Lambda -17	7033	Epsilon – 0,4 Eta – 0,01 Theta – 0 Iota –3,4 Kappa – 0,02 Lambda -0,2
Таиланд (рост заболева- емости)	COVID-19 Network Investigations (CONI) Alliance	Eta - 2 Kappa – 1	1863	Eta – 0,1 Kappa – 0,05	Eta - 0 Kappa – 0	40	Eta - 0 Kappa – 0
Тайвань	Microbial Genomics Core Lab, National Taiwan Univer- sity Centers of Genomic and Precision Medicine	Epsilon - 8	218	Epsilon – 3,7	Epsilon - 0	1	Epsilon - 0

Тёркс и Кайкос (стабилизация заболеваемости)	Carrington Lab, Department of Preclinical Sciences, Facul- ty of Medical Sciences, The University of the West Indies, St Augustine Campus	Epsilon – 2 Iota –1	10	Epsilon – 20,0 Iota –10,0	Epsilon – 0 Iota –0	0	Epsilon – 0 Iota –0
Того (рост заболева- емости)	Institut National d'hygiène	Eta - 25	125	Eta – 20,0	Eta – 0	0	Eta - 0
Тунис (рост заболеваемости)	Pasteur Institute - Laboratory of Clinical Virology	Eta - 1	116	Eta – 0,8	Eta - 0	0	Eta - 0
Турция (рост заболеваемости)	Ministry of Health Turkey	Epsilon - 2 Eta - 47 Iota –4 Lambda -1	5238	Epsilon – 0,04 Eta – 1,0 Iota –0,07 Lambda -0,02	Epsilon - 0 Eta - 0 Iota -0 Lambda -0	0	Epsilon - 0 Eta - 0 Iota -0 Lambda -0
Уганда (снижение забо- леваемости)	MRC/UVRI & LSHTM Uganda Research Unit	Eta - 37 Kappa – 1	496	Eta – 7,4 Kappa –0,2	Eta – 0 Kappa – 0	32	Eta - 0 Kappa – 0
Уругвай (снижение забо- леваемости)	Centro de Innovación en Vigilancia Epidemiológica (CiVE), Institut Pasteur Mon- tevideo, Uruguay	Lambda -1	555	Lambda -0,2	Lambda -0	0	Lambda -0
Филиппины (снижение забо- леваемости)	Philippine Genome Center	Epsilon - 2 Eta - 6 Theta – 191	4305	Epsilon - 0.05 $Eta - 0.1$ $Theta - 4.4$	Epsilon - 0 Eta - 0 Theta – 0	0	Epsilon - 0 Eta - 0 Theta -0
Финляндия (рост заболева- емости)	Department of Virology, Faculty of Medicine, University of Helsinki	Epsilon - 2 Eta - 25 Iota –1 Kappa –7	11476	Epsilon – 0,01 Eta – 0,2 Iota –0,008 Kappa – 0,06	Epsilon - 0 Eta - 0 Iota -0 Kappa - 0	0	Epsilon - 0 Eta - 0 Iota -0 Kappa - 0

Франция (рост заболева- емости)	CNR Virus des Infections Respiratoires - France SUD	Epsilon - 7 Eta - 698 Iota –8 Kappa – 16 Lambda -14	44361	Epsilon – 0,01 Eta – 1,5 Iota –0,01 Kappa – 0,03 Lambda -0,03	Epsilon - 0 Eta - 10 Iota -0 Kappa - 0 Lambda -2	2184	Epsilon - 0 Eta - 0,4 Iota -0 Kappa - 0 Lambda -0,1
Хорватия (стабилизация заболеваемости)	Croatian Institute of Public Health	Iota –4	4695	Iota -0,08	Iota –0	37	Iota –0
Чехия (рост заболева- емости)	The National Institute of Public Health	Kappa – 4 Lambda -1	4905	Kappa – 0,1 Lambda -0,02	Kappa – 0 Lambda -0	128	Kappa – 0 Lambda -0
Чили (снижение забо- леваемости)	Instituto de Salud Publica de Chile	Epsilon - 30 Iota –11 Lambda -840	4029	Epsilon – 0,7 Iota –0,3 Lambda -20,8	Epsilon - 0 Iota –0 Lambda -13	115	Epsilon - 0 Iota –0 Lambda -11,3
Швейцария (рост заболева- емости)	Department of Biosystems Science and Engineering, ETH Zürich.	Epsilon - 4 Eta - 55 Iota -12 Kappa - 10 Lambda -9	45449	Epsilon – 0,008 Eta – 0,1 Iota – 0,02 Kappa – 0,02 Lambda -0,02	Epsilon - 0 Eta - 1 Iota – 0 Kappa – 0 Lambda -2	691	Epsilon - 0 Eta -0.1 Iota -0 Kappa -0 Lambda - 0.2
Швеция (снижение забо- леваемости)	The Public Health Agency of Sweden	Epsilon - 2 Eta - 8 Iota -5 Kappa - 5	72097	Epsilon – 0 Eta – 0,01 Iota –0,007 Kappa – 0,007	Epsilon - 0 Eta - 0 Iota -1 Kappa - 0	2135	Epsilon - 0 Eta - 0 Iota -0,04 Kappa -0
Шри-Ланка (рост заболева- емости)	Centre for Dengue Research and AICBU, Department of Immunology and Molecular Medicine	Eta - 1	615	Eta – 0,1	Eta - 0	129	Eta - 0
Эквадор (рост заболеваемости)	Instituto Nacional de InvestigaciónenSaludPública, INSPI	Iota –168 Lambda -51	718	Iota –23,4 Lambda -7,1	Iota –2 Lambda -2	42	Iota –4,7 Lambda -4,7

Эстония (рост заболева- емости)	Laboratory of Communicable Diseases (Estonia); Eurofins Genomics Europe Sequencing GmbH	Eta - 1	4129	Eta – 0,02	Eta - 0	0	Eta - 0
ЮАР (рост заболева- емости)	KRISP, KZN Research Innovation and Sequencing Platform	Eta - 13 Kappa – 8	10851	Eta – 0,1 Kappa – 0,07	Eta - 0 Kappa – 1	484	Eta - 0 Kappa – 0,2
Южная Корея (рост заболева- емости)	Division of Emerging Infectious Diseases, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency	Epsilon - 103 Eta - 2 Theta - 1 Iota -4 Kappa - 12	8574	Epsilon – 1,2 Eta – 0,02 Theta – 0,01 Iota –0,04 Kappa – 0,1	Epsilon - 0 Eta - 0 Theta - 0 Iota -0 Kappa - 0	181	Epsilon - 0 Eta - 0 Theta - 0 Iota -0 Kappa - 0
Южный Судан (рост заболева- емости)	South Sudan Ministry of Health, WHO South Sudan, MRC/UVRI & LSHTM Uganda Research Unit	Eta - 36	45	Eta – 80,0	Eta - 0	0	Eta - 0
Япония (рост заболева- емости)	Pathogen Genomics Center, National Institute of Infec- tious Diseases	Epsilon - 20 Eta - 17 Theta - 5 Iota -5 Kappa - 27	60648	Epsilon – 0,03 Eta – 0,03 Theta – 0,008 Iota –0,008 Kappa – 0,04	Epsilon - 0 Eta - 0 Theta – 1 Iota –1 Kappa – 0	162	Epsilon - 0 Eta - 0 Theta - 0,6 Iota -0,6 Kappa - 0
Ямайка (стабилизация заболеваемости)	Carrington Lab, Department of PreClinical Sciences, Fac- ulty of Medical Sciences, The University of the West Indies	Iota –2	29	Iota -6,9	Iota –0	0	Iota –0

Подтвержденные случаи COVID-19 и случаи смерти, зарегистрированные за последние семь дней по странам, территориям и регионам, а также по региону BO3 (о которых сообщалось в предыдущих выпусках), теперь доступны по адресу: https://covid19.who.int/table

Приложение 2. Список стран / территорий / областей, сообщивших о вызывающих озабоченность вариантах по состоянию на 13 июля 2021 г. **

Country/Territory/Area***	Alpha	Beta	Gamma	Delta	Unspecified
Afghanistan	•	-	-	••	-
Albania	•	-	-	-	-
Algeria	•	-	-	•	-
Angola	•	•	-	-	-
Antigua and Barbuda	•	•	-	-	-
Argentina	•	•	•	•	-
Armenia	0	-	-	-	-
Aruba	•	•	•	•	
Australia	•	•	•	•	-
Austria	•	•	•	•	
Azerbaijan	•	-	-	-	
Bahrain	•	•	-	•	-
Bangladesh	•	•	-	•	
Barbados	•	-	•	•	-
Belarus	•		-	0	
Belgium	•	•	•	•	-
Belize	•	-	-	-	
Benin	••	-	-	-	
Bermuda	•	•	-	-	
Bhutan	•	•	-	•	
Bolivia (Plurinational State of)	•		•	-	
Bonaire	•	-	-	-	-
Bosnia and Herzegovina	0			0*	
Botswana	••	•	-	•	-
Brazil	•	•	•	•	
British Virgin Islands	•	-	•	-	-

Country/Territory/Ares***	Alpha	Reta	Gamma	Delta	Unspecified
Brunei Darussalam	•	•	-	-	-
Bulgaria	•	•	-	•	
Burkina Faso	•	-	-	-	-
Cabo Verde	•	-	-		
Cambodia	•	-	-	•	-
Cameroon	•	•	-	-	
Canada	•	•	•	•	-
Cayman Islands	•	-	•*		
Central African Republic	•	-	-	-	-
hile	•	•	•	•	
hina	•	•	•	0	
Colombia	•	-	•	-	
omoros	-	•	-	-	
Congo	•	-	-	-	
Costa Rica	•	•	•		
roatia	•	•	0	0	
Cuba	•	•			
Curação	•	-	•	-	•
yprus	•	•		0*	
zechia	•	•	•	•	
Ôte d'Ivoire	•	•			
Democratic Republic of the Congo	•	•	-	•	-
Denmark	•	•	•	•	
jibouti	•	•		-	
Dominica	•				

Country/Territory/Area***	Alpha	Bets	Gamma	Delta
Dominican Republic	•	-	•	-
Ecuador	•		•	•
Egypt	•	-	-	-
Equatorial Guinea	•	•	-	-
Estonia	•	•	0	-
Eswatini	•*	•	-	-
Ethiopia	0	-	-	-
Faroe Islands	•		•	-
Fiji	-	-	-	•
Finland	•	•	•	•
France	•	•	•	•
French Guiana	•	•	•	•
French Polynesia	•	•	•	•
Gabon	•	0	-	-
Gambia	•		-	•
Georgia	•	0	-	٠
Germany	•	•	•	•
Ghana	•	•	-	٠
Gibraltar	•			-
Greece	•	٠	•	٠
Grenada	•			-
Guadeloupe	•	٠	•	٠
Guam	•	•	•	•
Guatemala	•	٠	٠	-
Guinea	•	•		٠
Guinea-Bissau	•	•		-

Country/Territory/Area***	Alpha	Beta	Gamma	Delta	Unspecif ied
Guyana	-	-	•	-	-
Haiti	•	-	•	-	-
Honduras	•	-	-	-	-
Hungary	•	0	-	0	-
Iceland	•	-	-	-	-
India	•	•	•	•	-
Indonesia	•	•	-	•	-
Iran (Islamic Republic of)	•	•	-	•	-
Iraq	•	•	-	-	-
Ireland	•	•	•	•	-
Israel	•	•	•	•	-
Italy	•	•	•	•	-
Jamaica	•	-	-	-	-
Japan	•	•	•	•	-
Jordan	•	•	•	•	-
Kazakhstan	0	0	-	•	-
Kenya	•	•	-	•	-
Kosovo ^[1]	•	0	-	0	-
Kuwait	•	-	-	•	-
Kyrgyzstan	•	•*	-	-	-
Lao People's Democratic Republic	•	-	-	•	-
Latvia	•	•	•	0	-
Lebanon	•	-	-	•	-
Lesotho	-	•	-	-	-
Liberia	•	-	-	-	-
Libya	•	•	-	-	-
Liechtenstein	•	-	-	-	-
Lithuania	•	•	•	0	-
Luxembourg	•	•	•	•	-
Madagascar	••	•	-	-	-
Malawi	•	•	-	•	-

Country/Territory/Area***	Alpha	Beta	Gamma	Delta	Unspecified
Malaysia	•	•	-	•	-
Maldives	•	-	-	•	-
Malta	•	0	•	0	-
Martinique	•	•	•	•	-
Mauritania	•	•	-	•	-
Mauritius	0	•	-	•	-
Mayotte	•	•	-	-	-
Mexico	•	•	•	•	-
Monaco	•	0	-	0*	-
Montenegro	•	-	-	-	
Montserrat	•	-	-	-	-
Morocco	•	-	-	•	
Mozambique	-	•	-	•	
Myanmar	•	-	-	-	-
Namibia	••	•	-	•	
Nepal	•	-	-	•	-
Netherlands	•	•	•	•	
New Caledonia	•	-	-	-	-
New Zealand	•	•	0	0	
Niger	•	-	-	-	-
Nigeria	•	-	-	••	
North Macedonia	•	•	-	0*	
Norway	•	•	•	•	
Occupied Palestinian Territory	•	•	-	•	-
Oman	•	•	-	•	
Pakistan	•	•	•	•	-
Panama	•	•	•	-	•
Paraguay	•	-	•	-	-
Peru	•	-	•	•	
Philippines	•	•	•	•	
Poland	•	0	•	•	
Portugal	•	•	•	•	
-					

Country/Territory/Ares***	Alpha	Beta	Gamma	Delta	Unspecified
Puerto Rico	•	•	•	•	-
Qatar	•	•	-	•	-
Republic of Korea	•	•	•	•	-
Republic of Moldova	0	-	-	-	-
Romania	•	•	•	•	-
Russian Federation	•	•	-	•	-
Rwanda	•	0	-	-	-
Réunion	•	•	•	0	-
Saba	-	-	-	•	-
Saint Barthélemy	•	-	-	-	-
Saint Lucia	•	-	-	-	-
Saint Martin	•	•	-	-	-
Sao Tome and Principe	•	-	-	-	-
Saudi Arabia	•	•	-	•	-
Senegal	•	•	-	-	-
Serbia	•	-	-	-	-
Seychelles	-	•	-	-	-
Sierra Leone	-	-	-	0	-
Singapore	•	•	•	•	-
Sint Maarten	•	•	-	•	-
Slovakia	•	•	-	•	-
Slovenia	•	•	•	•	-
Somalia	•	-	-	-	
South Africa	•	•	-	•	-
Spain	•	•	•	•	-
Sri Lanka	•	•	-	•	-
Suriname	•	•	•	-	-
Sweden	•	•	•	•	-
Switzerland	•	•	0	•	
Thailand	•	•	•	•	-
Timor-Leste	•	-	-	-	-
Togo	•	•	-	-	-

Country/Territory/Area***	Alpha	Beta	Gamma	Delta	Unspecified
Trinidad and Tobago	•	-	•	-	-
Tunisia	•	•	-	•	-
Turkey	•	•	•	•	-
Turks and Caicos Islands	•	-	•	-	-
Uganda	•	•	-	•	-
Ukraine	•	0	-	0	-

Country/Territory/Area***	Alpha	Beta	Gamma	Delta	Unspecified
United Arab Emirates	•	•	•	•	-
United Kingdom	•	•	•	•	-
United Republic of Tanzania	-	•	-	-	-
United States of America	•	•	•	•	-
Uruguay	•	-	•	-	-
Uzbekistan	•	•	-	0	

Country/Territory/Area***	Alpha	Beta	Gamma	Delta	Unspecified
Venezuela (Bolivarian Republic of)	•	-	•	-	-
Viet Nam	•	•	-	•	-
Wallis and Futuna	•	-	-	-	-
Zambia	-	•	-	•	-
Zimbabwe	-	•	-	•	-

- * Новые страны, о которых сообщается в этом обновлении.
- «Не уточненный В.1.617» относится к странам / территориям / областям, сообщающим об обнаружении В.1.617 без дальнейшего уточнения линии происхождения в настоящее время. Они будут перераспределены по мере появления дополнительной информации.
 - «•» означает, что информация по этому варианту была получена ВОЗ из официальных источников.
- «о» означает, что информация по этому варианту была получена ВОЗ из неофициальных источников и будет пересмотрена по мере поступления дополнительной информации.
- ** Не уточненные В.1.617 были исключены на этой неделе для Нигерии, Кипра и Северной Македонии на основании дополнительной информации.
- *** Включает страны / территории / районы, сообщающие об обнаружении ВВО среди путешественников (например, завозные случаи, обнаруженные в пунктах пропуска через границу) или местные случаи (обнаруженные в сообществе). Исключены страны, территории и районы, которые никогда не сообщали об обнаружении варианта. Вызывающего озабоченность