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The paper investigates the methods of quantitative analysis of hidden statistical
relationships of the financial indicators of companies under conditions of high invest-
ment risk. A new semi-parametric method for estimating tail dependence indicators
using BB1 and BB7 dependence structures is proposed. For a dataset containing
the cost indicators of leading Russian companies, computer experiments were car-
ried out, as a result of which it was shown that the proposed method has a higher
stability and accuracy in comparison with other considered methods. Practical appli-
cation of the proposed risk management method would allow financial companies to
assess investment risks adequately in the face of extreme events.
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1. Introduction

The global changes currently taking place in the world financial markets
caused by the global pandemic of the coronavirus COVID-19, along with a cata-
strophic decline in oil prices, will obviously entail the need for serious changes
in the business structure of both individual companies and entire industries,
regional economies and countries. In the Russian conditions of high volatility
of financial markets, a successful solution to this problem is impossible without
the application of an analysis of the company’s resistance to the effects of
the external environment, the implementation of constant monitoring of the
behavior of a number of indicators of the enterprise profitability. In particular,
trigger analysis [1] is one of such effective methods of analysis. The use of
trigger analysis to study the sensitivity of a business structure to the impact
of disturbing factors is important, since it allows identifying in advance its
most weakly protected, most risky business lines, the socalled trigger points.
Examples of these are individual lines of business of a company, credit and
debt obligations, etc., precisely those areas of activity that potentially pose
a threat of an emergency in the company. Therefore, in order to weaken
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their influence on the structure as a whole, and on its individual lines, we
proposed instead of the trigger point in its vicinity on the scatter diagram to
form an aggregate set with the statistical properties of the meta-elliptic type
dependence structure [2]. This allows weakening to certain limits the impact of
the statistical dependence of the rest of the business lines on the problematic
one and redistributing the aggregate damage to the rest of the business
structure lines. In addition, the transition from an extreme dependence to
a meta-elliptic one simplifies the calculation of structural risk indicators by
the usual summation of the marginal risks for this structure. Examples of
such an approach to managing extreme risks are debt-restructuring, transfer
of fixed assets to subsidiaries and offshore companies, insurance, hedging
(issuance of credit derivatives), limiting and securitization operations in the
banking sector, etc.
This paper considers effective methods for analyzing the financial perfor-

mance of companies in the face of increased volatility in stock markets
associated with the global COVID-19 pandemic, as well as declining oil
prices. Using the example of analyzing the value of shares of leading Russian
companies, the advantages of their application are shown in comparison with
the classical multivariate analysis using a Gaussian distribution.

2. Methods for the quantitative analysis of structure
indicators of statistical dependences

Let (𝑋, 𝑌 ) be a two-dimensional random variable characterized by a joint
distribution function 𝐹 and partial distribution functions 𝐹1 and 𝐹2, respec-
tively. Then the coefficient of the lower tail dependence and the coefficient of
the upper tail dependence are respectively the limits

𝜆𝐿 = lim
𝑣→0+0

𝑃 (𝑋 ⩽ 𝐹 −1
1 (𝑣)|𝑌 ⩽ 𝐹 −1

2 (𝑣)) , (1)

𝜆𝑈 = lim
𝑣→1−0

𝑃 (𝑋 > 𝐹 −1
1 (𝑣)|𝑌 > 𝐹 −1

2 (𝑣)) . (2)

From equations (1)–(2) it obviously follows that the coefficients 𝜆𝐿 and
𝜆𝑈 can take the values within the limits from 0 to 1. The case 𝜆𝐿 > 0
(𝜆𝑈 > 0) is referred to as the presence of a tail dependence or the appearance
of a contagion [2] between the random variables 𝑋 and 𝑌. The situation
𝜆𝐿 = 1 (𝜆𝑈 = 1) corresponds to full contagion [3].
Using the concepts of copula theory [3], we can write expressions for the

coefficients of the tail dependence in the following form:

𝜆𝐿 = lim
𝑣→0+0

𝐶(𝑣, 𝑣)
𝑣

, (3)

𝜆𝑈 = lim
𝑣→1−0

1 − 2𝑣 + 𝐶(𝑣, 𝑣)
1 − 𝑣

, (4)

where 𝐶 is the copula of the joint distribution of random variables. It follows
from this representation that the tail dependence coefficients are a property
of the dependence structure and do not depend on the partial distributions.
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In the general case of 𝑑-dimensional distribution of random variables

(𝑋(1), ..., 𝑋(𝑑)), to describe the nature of the extreme dependence using

the coefficients of the tail dependence, it is necessary to estimate the
𝑑(𝑑 − 1)

2
pairs of values of the coefficients 𝜆𝑖𝑗, 1 ⩽ 𝑖, 𝑗 ⩽ 𝑑. When using nonparamet-
ric methods, each pair of tail coefficients can be estimated separately, while
when using para-metric and semi-parametric approaches, it is necessary to
take into account the structure of the relationship between all 𝑑 components
of the multivariate distribution.

3. Nonparametric estimation methods

Let Xn,Yn be samples of independent identically distributed random
variables. We define the empirical copula function as

𝐶𝑛(𝑢, 𝑣) = 1
𝑛

𝑛
∑
𝑗=1

1{Rank(𝑋𝑗)⩽𝑛⋅𝑢,Rank(𝑌𝑗)⩽𝑛⋅𝑣}

Introducing the notation 𝑈𝑗 = Rank(𝑋𝑗), 𝑉𝑗 = Rank(𝑌𝑗), by definition of
tail dependence coefficients we get

�̂�𝐿,𝑛(𝑘) = 𝑛
𝑘

⋅ 𝐶𝑛 (𝑘
𝑛

, 𝑘
𝑛

) = 1
𝑘

⋅
𝑛

∑
𝑗=1

1{𝑈𝑗⩽𝑘,𝑉𝑗⩽𝑘}, (5)

�̂�𝐿,𝑛(𝑘) = 𝑛
𝑘

⋅ 𝐶𝑛 ((1 − 𝑘
𝑛

, 1] × (1 − 𝑘
𝑛

, 1]) =

= 1
𝑘

𝑛
∑
𝑗=1

1{𝑈𝑗>𝑛−𝑘,𝑉𝑗>𝑛−𝑘} = 2 − 1
𝑘

𝑛
∑
𝑗=1

1{𝑈𝑗>𝑛−𝑘 or 𝑉𝑗>𝑛−𝑘}, (6)

where 𝐶𝑛 ((𝑎, 𝑏] × (𝑐, 𝑑]) is the empirical probability measure of the copula

function on a rectangle (𝑎, 𝑏] × (𝑐, 𝑑], 𝑘 = 𝑘(𝑛) → ∞, 𝑘
𝑛

→ 0 at 𝑛 → ∞. The
consistency and normality of the estimates were proved in [4]. Logarithmic
parametric estimates for 𝜆𝐿 and 𝜆𝑈 can be obtained using equations (3), (4).
Thus, the expression for the coefficient of the lower tail dependence can be
represented as

𝜆𝐿 = lim
𝑣→0+0

𝐶(𝑣, 𝑣)
𝑣

= 2− lim
𝑣→0+0

−2𝑣 + 𝐶(𝑣, 𝑣)
−𝑣

= 2− lim
𝑣→0+0

ln(1 − 2𝑣 + 𝐶(𝑣, 𝑣))
ln(1 − 𝑣)

.

According to this formula, the value of 𝜆𝐿 can be estimated as

�̂�LOG𝐿,𝑛 (𝑘) = 2−
ln (𝐶𝑛 (( 𝑘

𝑛 , 1] × ( 𝑘
𝑛 , 1]))

ln (1 − 𝑘
𝑛)

= 2−
ln( 1

𝑛

𝑛
∑
𝑗=1

1{𝑈𝑗>𝑘,𝑉𝑗>𝑘})

ln (1 − 𝑘
𝑛)

, (7)
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where index 𝑘 = 𝑘(𝑛) → ∞, 𝑘
𝑛

→ 0 when 𝑛 → ∞. Similarly, for the coefficient
of the upper tail dependence, the representation

𝜆𝑈 = lim
𝑣→1−0

1 − 2𝑣 + 𝐶(𝑣, 𝑣)
1 − 𝑣

= 2 − lim
𝑣→1−0

𝐶(𝑣, 𝑣) − 1
𝑣 − 1

= 2 − lim
𝑣→1−0

ln(𝐶(𝑣, 𝑣))
ln(𝑣)

is valid, as well as the estimate

�̂�LOG𝑈,𝑛 (𝑘) = 2 −
ln(𝐶𝑛 (1 − 𝑘

𝑛
, 1 − 𝑘

𝑛
))

ln(1 − 𝑘
𝑛

)
=

2 −
ln( 1

𝑛
𝑛

∑
𝑗=1

1{𝑈𝑗 ⩽ 𝑛 − 𝑘or𝑉𝑗 ⩽ 𝑛 − 𝑘})

ln(1 − 𝑘
𝑛

)
, (8)

𝑘 = 𝑘(𝑛) → ∞, 𝑘
𝑛

→ 0 at 𝑛 → ∞. Estimates (7), (8) have the property that
they are sharp for all 𝑘 in the limiting cases of statistical independence and
comonotonicity. Indeed,

𝜆LOGindep,𝐿 = 2 − ln(1 − 2𝑣 + Π(𝑣, 𝑣))
ln(1 − 𝑣)

= 2 −
ln(1 − 2𝑣 + 𝑣2)
ln(1 − 𝑣)

= 0,

𝜆LOGcom,𝐿 = 2 − ln(1 − 2𝑣 + 𝑀(𝑣, 𝑣))
ln(1 − 𝑣)

= 2 − ln(1 − 2𝑣 + 𝑣)
ln(1 − 𝑣)

= 1,

𝜆LOGindep,𝑈 = 2 − ln(Π(𝑣, 𝑣))
ln(𝑣)

= 2 −
ln(𝑣2)
ln(𝑣)

= 0,

𝜆LOGcom,𝑈 = 2 − ln(𝑀(𝑣, 𝑣))
ln(𝑣)

= 2 − ln(𝑣)
ln(𝑣)

= 1,

where Π(𝑢, 𝑣) = 𝑢𝑣 is the function of the copula of independent random
variables, 𝑀(𝑢, 𝑣) = min(𝑢, 𝑣) is the copula of comonotonic (completely
dependent) random variables. The consistency and asymptotic normality of
the estimates was proved in [4]. Figure 1 plots the values of the tail ratios
estimates depending on the choice of the threshold 𝑘 for the joint distribution
of fifteen-minute logarithmic increments in the value of Rosneft and Lenta
equities in the period from December 15, 2019 to September 30, 2020. In
the range of stability 30 ⩽ 𝑘 ⩽ 70 of estimates, the value of the tail ratios is
significantly greater than zero, which indicates a strong dependence of the
investigated financial indicators in the area of extreme values.
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Figure 1. Estimation of indicators of the lower (left) and upper (right) tail coefficients of the

joint distribution of the logarithmic increments of the value of Rosneft and Lenta shares

depending on the parameter 𝑘. standard estimate (6), (7), logarithmic

estimate (8), (9)

4. Parametric estimation methods

The parametric approach to estimating the values of tail coefficients is
based on the use of a mathematical model of the initial data structure in
the form of a parametric copula 𝐶𝜃. In this case, estimates of the lower and
upper coefficients of the tail dependence can be found as a function of the

model parameters 𝐶𝜃: �̂� = 𝜆( ̂𝜃). To obtain estimates of the parameters of the
dependence structure function, it is necessary to pass from the set of initial

samples X
(i)
n = (𝑋(𝑖)

1 , ..., 𝑋(𝑖)
𝑛 ), 1 ⩽ 𝑖 ⩽ 𝑑 to samples of uniformly distributed

on [0, 1] random variables U
(i)
n = (𝑈 (𝑖)

1 , ..., 𝑈 (𝑖)
𝑛 ), 1 ⩽ 𝑖 ⩽ 𝑑. It is necessary

to characterize the partial distributions 𝐹𝑖, 1 ⩽ 𝑖 ⩽ 𝑑. If any of the partial
distribution functions is characterized by a set of parameters 𝜗𝑖, 1 ⩽ 𝑖 ⩽ 𝑑,
the approach is referred to as fully parametric. Otherwise, if the partial
distributions are replaced with empirical ones (i.e., the ranging operation is
applied) the approach is referred to as semiparametric.
Parametric estimation can be done in one or two stages. In the first case,

the parameters of the partial distributions 𝜗𝑖, 1 ⩽ 𝑖 ⩽ 𝑑, as well as the
parameters 𝜃 of the dependence structure, are estimated together. Typically,
the maximum likelihood method is used. In the second case, the assessment
takes place in two stages. Due to the very useful property of the copula
function, according to which the copula function does not depend on the
partial distributions, it is possible to separate the operations of estimating
the parameters of the partial distributions 𝜗𝑖, 1 ⩽ 𝑖 ⩽ 𝑑 and the parameters
of the dependency structure 𝜃. At the first stage, the parameters 𝜗𝑖 of the
partial distribution functions 𝐹𝑖 are estimated for 1 ⩽ 𝑖 ⩽ 𝑑. Then, based on
the estimates found, a set of samples is formed

( ̂U
(1)
n , ..., Û(d)

n ) = (𝐹1, ̂𝜗1
(X̂(1)

n ) , ..., 𝐹𝑑, ̂𝜗𝑑
( ̂X

(d)
n )) ,

using which the parameters 𝜃 of the dependency structure are estimated. This
method is also known as the pseudo-maximum likelihood method.
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The semi-parametric approach implies that partial distributions 𝐹𝑖, 1 ⩽ 𝑖 ⩽
𝑑 are replaced by empirical distribution functions. Then, as in the previous
method, the parameters 𝜃 of the dependency structure are estimated using
the maximum likelihood method. As shown in [5], the estimate of the model
parameters obtained in this way, as well as the estimate of the tail coefficients,
is asymptotically stable and normal. Numerical experiments [4] show that
in their properties semi-parametric estimates are almost identical to fully
parametric estimates. It should be noted that the use of parametric models
of partial distributions 𝐹𝑖, 1 ⩽ 𝑖 ⩽ 𝑑 can lead to significant errors at the
stage of estimating the parameters of the structure of dependence, and, as
a consequence, inaccurate and inadequate estimates of the values of the
coefficients 𝜆. The semi-parametric approach is more stable in this sense,
since it does not have the described disadvantage.

It is convenient to use functions from the number of two-parameter
Archimedean copulas [3] as models of the structures of statistical depen-
dence capable of simulating the tail dependence in the two-dimensional case.
Below are the expressions for the copula function and the Archimedean
generator of models BB1 and BB7

𝐶𝐵𝐵1(𝑢, 𝑣) = (1 + ((𝑢−𝜃 − 1)𝛿 + (𝑣−𝜃 − 1)𝛿)
1
𝛿 )

− 1
𝜃

, (9)

𝛿 ⩾ 1, 𝜃 > 0, 𝜙𝐵𝐵1(𝑤) = (𝑤−𝜃 − 1)𝛿;

𝐶𝐵𝐵7(𝑢, 𝑣) =

= 1 − (1 − ((1 − (1 − 𝑢)𝜃)−𝛿 + (1 − (1 − 𝑢)𝜃)−𝛿 − 1)
− 1

𝛿 )
1
𝜃

, (10)

𝛿 > 0, 𝜃 ⩾ 1, 𝜙𝐵𝐵7(𝑤) = (1 − (1 − 𝑤)𝜃)−𝛿.
These models are convenient in that they allow one to obtain explicit

expressions for the tail dependence coefficients. Thus, for model (9)

𝜆𝑈 = 2 − 21
𝛿 , 𝜆𝐿 = 2− 1

𝛿𝜃 , 𝜆𝐿 = 2− 1
𝛿 , 𝜆𝑈 = 2 − 21

𝜃 .

As can be seen from the last formula, the coefficient of the upper tail
dependence 𝜆𝑈 of the model (10) depends only on the model parameter 𝜃
and does not depend on the model parameter 𝛿, whereas the coefficient of
the lower tail dependence 𝜆𝐿 depends only on the parameter 𝛿 and does not
depend on 𝜃. This allows parameterization of the model using the coefficients
𝜆𝐿 and 𝜆𝑈:

𝛿 = − 1
log2 𝜆𝐿

, 𝜃 = 1
log2(2 − 𝜆𝑈)

,

as well as construction of the modified copula models of Clayton, BB7 and
some others [1]. Figure 2 plots the density of the copula BB7 with the
corresponding parameters of the tail relationship between the Rosneft and
AO Lukoil equities.
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Figure 2. Density of copula BB7, parameterized by the coefficients of the tail dependence.

Parameter values: left 𝜆𝐿 = 0.2, 𝜆𝑈 = 0.8, right 𝜆𝐿 = 0.5, 𝜆𝑈 = 0.1

5. Parametric approach for elliptic distributions

The case when the investigated distribution (𝑋(1), ..., 𝑋(𝑑)) is elliptic de-
serves a separate consideration. Since distributions of elliptic type are
symmetric, it is obvious that for ∀𝑖, 𝑗 𝜆𝑖𝑗,𝐿 = 𝜆𝑖𝑗,𝑈 (below the notation

𝜆𝑖𝑗 is used). In [5], it was shown that the coefficient 𝜆𝑖𝑗 of the tail depen-

dence between the components 𝑋(𝑖) and 𝑋(𝑗) depends only on the index 𝑣
of regular variation of the elliptic generator, if it is regularly changing, and
the value of the parameter 𝜌𝑖𝑗. In this case, the tail dependence coefficient is

expressed through these parameters as follows [6]:

𝜆𝑖𝑗 = 2 ⋅ 𝑡𝑣+1 (
√

𝑣 + 1√
1 − 𝜌𝑖𝑗

1 + 𝜌𝑖𝑗
) ,

where 𝑡𝑣+1 is the survival function of the Student’s distribution with 𝑣 + 1
degrees of freedom.

When studying the behavior of the logarithmic increments in the value of
shares of the largest issuers of the Russian stock market, we found that the joint
distribution of these indicators could be described by the multidimensional
Student’s distribution, which is known to belong to the class of elliptic
distributions [7]. We selected shares of companies Rosneft, Lukoil, Lenta,
Mosenergo, Rostelecom; the data were obtained on the website of the Finam
company [8]. The results of estimating the parameters of the joint distribution
are shown in table 1. The values correspond to the period from 12/15/2019 to
09/30/2020 (ARCH (2) time series model). Table 2 shows the tail dependence
matrix calculated from these values, containing pairwise coefficients 𝜆𝑖𝑗.

The values of 𝜆𝑖𝑗 in table 2 are significantly greater than zero, which indi-
cates the presence of an extreme type dependence structure. The investigated
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statistical dependence cannot be correctly described by the multivariate nor-
mal distribution. In practice, this can lead to a significant underestimation of
the risks of extremely high losses when investing in this block of shares.

Table 1

Parameters of joint distribution of logarithmic increments in the value of shares

of Russian companies

Extreme index 𝑣 = 4, 1
Correlation matrix

Lukoil Mosenergo Rostelecom Lenta Rosneft

Lukoil 1 0,59 0,70 0,72 0,70

Mosenergo 0,59 1 0,57 0,54 0,48

Rostelecom 0,70 0,57 1 0,67 0,60

Lenta 0,72 0,54 0,67 1 0,62

Rosneft 0,70 0,48 0,60 0,62 1

Table 2

Tail dependence matrix of the logarithmic increments distribution of the value of shares

of Russian companies

Lukoil Mosenergo Rostelecom Lenta Rosneft

Lukoil 1 0,30 0,39 0,40 0,39

Mosenergo 0,30 1 0,29 0,27 0,24

Rostelecom 0,39 0,29 1 0,36 0,31

Lenta 0,40 0,27 0,36 1 0,32

Rosneft 0,39 0,24 0,31 0,32 1

6. Methods for estimating tail dependence indicators
using the theory of extreme values

Let us consider the case when the considered distribution function of random
variables 𝐹 lies in the attraction domain of the distribution of extreme values
𝐺 [3]: 𝐹 ∈ 𝐷𝐴(𝐺), i.e.,

lim
𝑛→∞

𝑃 (
max1⩽𝑗⩽𝑛 𝑋𝑛 − 𝑏𝑛

𝑎𝑛
⩽ 𝑥,

max1⩽𝑗⩽𝑛 𝑌𝑛 − 𝑑𝑛

𝑐𝑛
⩽ 𝑦) =

= lim
𝑛→∞

𝐹 𝑛(𝑎𝑛𝑥 + 𝑏𝑛, 𝑐𝑛𝑦 + 𝑑𝑛) = 𝐺(𝑥, 𝑦), (11)
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where 𝑎𝑛, 𝑐𝑛 > 0, 𝑏𝑛, 𝑑𝑛 ∈ ℝ. Let us introduce the concept of the limiting in-
dicator of the tail dependence: 𝜆𝐸𝑉

𝑈 = lim𝑣→1−0 𝑃(𝑋 > 𝐺−1
1 (𝑣)|𝑌 > 𝐺−1

2 (𝑣)),
where 𝐺1, 𝐺2 – partial distribution functions of the extreme joint distribution
function 𝐺. Then the following theorem is true:

Theorem 1. For a distribution function lying in the attraction domain of
the distribution function of extreme values 𝐺, the tail dependence index 𝜆𝑈
coincides with the extreme tail dependence index 𝜆𝐸𝑉

𝑈 .

Proof. We use the transformation proposed in [9], passing to the distribu-
tion

𝐹∗(𝑥, 𝑦) = 𝐹 (( 1
1 − 𝐹1

)
−1

(𝑥), ( 1
1 − 𝐹2

)
−1

(𝑦)) ,

that lies in the attraction domain of the distribution

𝐺∗(𝑥, 𝑦) = 𝐺 (( 1
− ln𝐺1

)
−1

(𝑥), ( 1
− ln𝐺2

)
−1

(𝑦)) . (12)

The partial distributions 𝐺∗1,𝐺∗2 have the form of Frechet distribution
functions with the parameter 𝛾 = 1 (standard Frechet distribution):

𝐺∗1 = 𝐺∗2 = Φ1(𝑥)
⎧{
⎨{⎩

𝑒− 1
𝑥 , 𝑥 > 0,

0, 𝑥 ⩽ 0.

Limit relation (??) for functions 𝐹∗ and 𝐺∗ takes the form

lim
𝑛→∞

𝐹 𝑛
∗ (𝑛𝑥, 𝑛𝑦) = 𝐺∗(𝑥, 𝑦),

or, similarly
lim

𝑛→∞
𝑛 (1 − 𝐹∗(𝑛𝑥, 𝑛𝑦)) = − ln𝐺∗(𝑥, 𝑦). (13)

Omitting the intermediate derivations, we obtain from equation (13)

− ln𝐺∗(𝑡, 𝑡) = lim
𝑛→∞

𝑛 (1 − 𝐹 (( 1
1 − 𝐹1

)
−1

(𝑛𝑡), ( 1
1 − 𝐹2

)
−1

(𝑛𝑡))) =

= lim
𝑛→∞

𝑛 ( 1
𝑛𝑡

+ 1
𝑛𝑡

− 𝜆𝑈
1
𝑛𝑡

) = 2 − 𝜆𝑈
𝑡

.

By definition (12), the distribution of extreme values 𝐺∗ is obtained from
the original distribution 𝐺 using a monotonic transformation. This means
that the copula functions of these distributions coincide. Using this fact and
the result obtained above for ln𝐺∗(𝑡, 𝑡), we have:

𝜆𝐸𝑉
𝑈 = lim

𝑣→1−0

1 − 2𝑣 + 𝐶𝐸𝑉(𝑣, 𝑣)
1 − 𝑣

= lim
𝑣→1−0

1 − 2𝑣 + 𝐺∗ (− 1
ln 𝑣

, − 1
ln 𝑣

)

1 − 𝑣
=



E.Yu. Shchetinin, On methods of quantitative analysis of the company’s… 355

= lim
𝑣→1−0

1 − 2𝑣 + 𝑒ln𝑣(2−𝜆𝑈)

1 − 𝑣
= lim

𝑣→1−0

1 − 2𝑣 + 𝑣2−𝜆𝑈

1 − 𝑣
= 𝜆𝑈.

A similar result is, of course, also valid for the lower tail coefficient and the
limiting distribution of block minima. This property allows, when estimating
the tail coefficient, to go from the entire available sample to its extreme values
(block extrema). At the same time, a distinction is made between semi- and
fully parametric approaches to estimating the parameters of the resulting
distribution. In the case of using a semi-parametric approach, the parameters
of the limiting structure of dependence [3] are estimated from

( ̂𝑈max 𝑖, ̂𝑉max 𝑖) = (Rank (�̂�max 𝑖) ,Rank ( ̂𝑌max 𝑖)) , 1 ⩽ 𝑖 ⩽ ⌊𝑛
𝑘

⌋ ,

where �̂�max 𝑖 =
𝑘
∨

𝑗=1
𝑋(𝑖−1)𝑘+𝑗,

̂𝑌max 𝑖 =
𝑘
∨

𝑗=1
𝑌(𝑖−1)𝑘+𝑗, 1 ⩽ 𝑘 < 𝑛, 1 ⩽ 𝑖 ⩽ ⌊𝑛

𝑘
⌋.

As a model of the structure of the dependence of the limiting distribution of
extrema, we have proposed various functions of copula of the extreme type,
in particular, the Gumbel model (logistic model):

𝐶𝐸𝑉(𝑢, 𝑣) = exp(− ((− ln𝑢)𝑅 + (− ln 𝑣)𝑅)
1
𝑅 ) , 𝑅 ⩾ 1. (14)

The estimate of the coefficient of the upper tail dependence for model (14)

has the form 𝜆𝐸𝑉
𝑈 (𝑘) = 2 − 2

1
𝑅𝑈(𝑘) . The formulas for estimating the coefficient

of the lower tail dependence are completely similar. They were obtained by
passing to the distribution of the maxima of the quantities (−𝑋, −𝑌 ):

�̂�min 𝑖 = max
1⩽𝑗⩽𝑛

(−𝑋(𝑖−1)𝑘+𝑗) , ̂𝑌min 𝑖 = max
1⩽𝑗⩽𝑛

(−𝑌(𝑖−1)𝑘+𝑗) ,

1 ⩽ 𝑘 < 𝑛, 1 ⩽ 𝑖 ⩽ ⌊𝑛
𝑘

⌋ ,

( ̂𝑈min 𝑖, ̂𝑉min 𝑖) = (Rank (�̂�min 𝑖) ,Rank ( ̂𝑦min 𝑖)) , 1 ⩽ 𝑖 ⩽ ⌊𝑛
𝑘

⌋ ,

𝜆𝐿(𝑘) = 2 − 2

1
𝑅𝐿(𝑘) .

An alternative approach to characterizing the distribution function of
extreme values is the peaks over threshold (POT) method. A detailed
description of this approach can be found in [10]. We only note that the idea
of the method is to characterize the limiting distribution of excesses that
have exceeded a given threshold value. In [4], it was proposed to evaluate the
value of the upper tail coefficient by considering the values of the points of
the investigated structure of the dependence (𝑈, 𝑉 ) lying in the region [𝑡, 1]2,
where 𝑡 is the threshold parameter tending to 1:

( ̂U∗
U, V̂∗

U) = {(𝑈𝑗, 𝑉𝑗) ∶ (𝑈𝑗, 𝑉𝑗) ∈ [𝑡, 1] × [𝑡, 1]} , 0 ⩽ 𝑡 < 1.



356 DCM&ACS. 2020, 28 (4) 346–360

To estimate the lower tail coefficient, values from the region [0, 𝑡]2, 𝑡 → 0
should be considered:

(Û∗
L, ̂V∗

L) = {(𝑈𝑗, 𝑉𝑗) ∶ (𝑈𝑗, 𝑉𝑗) ∈ [0, 𝑡] × [0, 𝑡]} , 0 < 𝑡 ⩽ 1.

In [9], a relation was proved that makes it possible to estimate the parameter
𝜆𝐿 in the case when the quantities (𝑋, 𝑌 ) under consideration are related by
the Archimedean structure of the dependence. The authors showed that if
a copula 𝐶 has an Archimedean generator with an index of regular variation
𝛼 > 0, then the lower threshold copula

𝐶𝐿,𝑡(𝑢, 𝑣) = 𝑃 (𝑈 ⩽ 𝑢, 𝑉 ⩽ 𝑣|𝑈 ⩽ 𝑡, 𝑉 ⩽ 𝑡) , (15)

converges in the limit at 𝑡 → 0 to the Clayton copula 𝐶𝛼 with parameter
𝛿 = 𝛼:

lim
𝑡→0

𝐶𝐿,𝑡(𝑢, 𝑣) = 𝐶𝐶𝑙(𝑢, 𝑣), ∀𝑢, 𝑣 ∈ [0, 1],

where 𝐶𝐶𝑙(𝑢, 𝑣) = (𝑢−𝛿 + 𝑣−𝛿 − 1)− 1
𝛿 is an Archimedean copula with genera-

tor 𝜙(𝑤) = 𝑤−𝛿 − 1, 𝛿 > 0. This dependence structure model has a lower tail
dependence with coefficient 𝜆𝐿 = 2− 1

𝛿 .

In the case when the type of the investigated structure of dependence (𝑈, 𝑉 )
is not Archimedean, one should choose another model of the limiting copula
capable of simulating the tail dependence. For example, it is convenient to
use the Gumbel model in the form (14) to model the upper threshold copula

𝐶𝑈,𝑡(𝑢, 𝑣) = 𝑃 (𝑈 > 𝑢, 𝑉 > 𝑣|𝑈 > 𝑡, 𝑉 > 𝑡) , 0 ⩽ 𝑡 < 1, (16)

and the inverse Gumbel copula 𝐶𝐸𝑉(𝑢, 𝑣) = 𝐶𝐸𝑉(1 − 𝑢, 1 − 𝑣) + 𝑢 + 𝑣 − 1 for
modeling the lower threshold copula (15).

The disadvantage of the threshold method is that when the threshold
parameter 𝑡 is close to 0 (when estimating the coefficient of the lower tail
dependence) and 1 (when estimating the coefficient of the upper tail depen-
dence), too few points fall into the region where the threshold is exceeded,
which makes it impossible to estimate tail parameters with sufficient accu-
racy. If the threshold is too low, the extreme copula (14) ceases to be an
adequate model of the truncated structure of the dependence, which leads
to significant systematic errors. The so-called bias-variance problem arises.
To solve it, it was proposed to use a combined threshold approach [3]. The
essence of the method is that the threshold model of the structure of depen-
dence could adequately describe both the behavior of the entire sample and
its points lying in the region of extreme values for different values of the pa-
rameters. Then, even at low values of the threshold 𝑡, one can count on the
stability of the estimates obtained. We propose to use models (9), (10) as
such flexible structures of dependence. These models are very versatile and
make it possible to simulate both the integral structure of dependence and
its behavior in extreme areas.

To test the described models of tail dependence, we used samples Xn,
Yn from a two-dimensional distribution with the structure of a mixed-type
dependence
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𝐶𝑚𝑖𝑥(𝑢, 𝑣) = 1
2

𝐶𝐶𝑙1
(𝑢, 𝑣) + 1

2
𝐶𝐶𝑙2

(𝑢, 𝑣), (17)

where 𝐶𝐶𝑙1
is the Clayton copula with parameter 𝛿1 = 3.11, 𝐶𝐶𝑙2

is the

inverse Clayton copula with the parameter 𝛿2 = 1.36. The coefficients of the
lower and upper tail dependences of copula (17) are, respectively, equal to

𝜆∗
𝐿 = 1

2
𝜆𝐿,1 + 1

2
𝜆𝐿,2 = 1

2
⋅ 2− 1

𝛿1 + 1
2

⋅ 0 = 0.40,

𝜆∗
𝑈 = 1

2
𝜆𝑈,1 + 1

2
𝜆𝑈,2 = 1

2
⋅ 0 + 1

2
⋅ 2− 1

𝛿2 = 0.30.

Figures 3, 4 show the plots of the estimates obtained by the block extremum
method and the threshold method. As can be seen, the combined threshold
method provides greater stability of estimates depending on the parameter 𝑡.

Figure 3. Estimation of indicators of tail distribution coefficients of block minima (left) and

block maxima (right) depending on the parameter 𝑘

Figure 4. Estimation of indicators of the lower (left) and upper (right) tail distribution

coefficients depending on the threshold parameter 𝑡. model BB1, model Gumbel
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7. Conclusion

This paper proposes and investigates methods for analyzing the financial
performance of companies in the context of increased volatility in stock markets
associated with the global COVID-19 pandemic, as well as a decline in oil
prices during the period 12/15/2019 – 09/30/2020. Computer experiments are
carried out to assess the riskiness of investments in leading Russian companies
and to analyze the value of shares of leading Russian companies, and the
advantages of their application are shown in comparison with the classical
multivariate analysis using a Gaussian distribution. Analysis of the properties
of estimates of the tail dependence coefficients showed their high sensitivity
to extreme changes in the value of companies’ shares, which makes it possible
to use them as indicators of the occurrence of extreme events in the stock
markets and to make timely decisions on the management of their investment
projects.

References

[1] E. Y. Shchetinin, “On new approaches to company management
in emergency situations [Novyh podhodah k upravleniyu kompaniej
v chrezvychajnyh situaciyah],” Finansy i kredit, vol. 30, no. 198, pp. 71–
75, 2005, In Russian.

[2] E. Y. Shchetinin, K. M. Nazarenko, and A. V. Paramonov, “Instrumental
methods of stochastic analysis of extreme events [Instrumental’nye
metody stohasticheskogo analiza ekstremal’nyh sobytij],” Vestnik NNGU,
Matematicheskoye modelirovaniye i optimal’noye upravleniye, vol. 2,
no. 29, pp. 56–63, 2004, In Russian.

[3] V. A. Akimov, A. A. Bykov, and E. Y. Shchetinin, Introduction to
statistics of extreme values, EMERCOM of Russia [Vvedenie v statistiku
ekstremal’nyh znachenij i ee prilozheniya]. Moscow: FGU VNII GOChS
(FTs), 2009, 524 pp., In Russian.

[4] R. Schmidt and U. Stadtmüller, “Non-parametric estimation of tail
dependence,” Scandinavian Journal of Statistics, vol. 33, no. 2, pp. 307–
335, 2006.

[5] R. Schmidt, Tail dependence. In Statistical tools in finance and insurance,
W. Hardle, P. Cizek, and R. Weron, Eds. Springer Verlag, 2003.

[6] G. Frahm, M. Junker, and A. Szimayer, “Elliptical copulas: Applicability
and limitations,” Statistics & Probability Letters, vol. 63, no. 3, pp. 275–
286, 2003. DOI: 10.1016/S0167-7152(03)00092-0.

[7] S. Resnick, Extreme values, regular variation and point processes. Berlin:
Springer, 1987.

[8] E. Y. Shchetinin, “Vine copulas structures modeling on Russian stock
market,” Discrete and Continuous Models and Applied Computational
Science, vol. 27, no. 4, pp. 343–354, 2019. DOI: 10.22363/2658-4670-
2019-27-4-343-354.



E.Yu. Shchetinin, On methods of quantitative analysis of the company’s… 359

[9] E. Y. Shchetinin, “Modeling of D-branching structures in the Russian
stock market [Modelirovanie struktur D-vetvlenij na rossijskom fon-
dovom rynke],” Vestnik komp’yuternykh i informatsionnykh tekhnologiy,
vol. 8, no. 182, pp. 38–45, 2019, In Russian.

[10] C. Genest, K. Ghoudi, and L. Rivest, “A semiparametric estimation
procedure of dependence parameters in multivariate families of distri-
butions,” Biometrika, vol. 82, no. 3, pp. 543–552, 1995. DOI: 10.1093/
biomet/82.3.543.

For citation:

E.Yu. Shchetinin, On methods of quantitative analysis of the company’s
financial indicators under conditions of high risk of investments, Discrete and
Continuous Models and Applied Computational Science 28 (4) (2020) 346–360.
DOI: 10.22363/2658-4670-2020-28-4-346-360.

Information about the authors:

Shchetinin, Eugeny Yu. — Doctor of Physical and Mathemati-
cal Sciences, lecturer of Department of Data Analysis, Decision
Making and Financial Technologies (e-mail: riviera-molto@mail.ru,
phone: +7(917)5390698, ORCID: https://orcid.org/0000-0003-3651-7629,
ResearcherID: O-8287-2017, Scopus Author ID: 16408533100)



360 DCM&ACS. 2020, 28 (4) 346–360

УДК 519.7:338.67

DOI: 10.22363/2658-4670-2020-28-4-346-360

О методах количественного анализа финансовых
показателей компании в условиях высокой

рискованности инвестиций

Е. Ю. Щетинин

Финансовый университет при Правительстве Российской Федерации
Ленинградский проспект, д. 49, Москва, 125993, Россия

В работе исследованы методы количественного анализа скрытых стати-
стических связей финансовых показателей компаний в условиях высокой
рискованности инвестирования. Предложен новый полупараметрический ме-
тод оценивания показателей хвостовой зависимости с использованием моделей
структур зависимости BB1 и BB7. Для набора данных, содержащих стоимостные
показатели ведущих российских компаний, проведены компьютерные экспери-
менты, в результате которых показано, что предложенный метод обладает более
высокой устойчивостью и точностью по сравнению с другими рассмотренными
методами. Практическое применение представленного метода управления риска-
ми позволило бы финансовым компаниям адекватно оценивать инвестиционные
риски в условиях наступления экстремальных событий.

Ключевые слова: финансовые показатели, глубокие статистические связи,
структуры зависимости, хвостовой коэффициент, копула




