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Abstract

The reversible process where a homogenous fluid de-mixes into two distinctively separate liquid phases is referred
to as LLPS (Liquid-liquid phase separation). The resulting liquid is made up of one dilute phase and one condensed
phase. An increasing number of studies have shown that the liquid-liquid phase separation is an important
principle that underlies intracellular organization in biological systems, forming liquid condensates without a
membrane envelope, otherwise known as MLOs (membraneless organelles). Such organelles include the P
bodies, nucleolus and stress granules. Moreover, the regulation of many other biological processes such as
signal transduction, chromatin rearrangement and RNA metabolism have been linked to the liquid-liquid
phase separation.

Dear Editor,

Background
The reversible process where a homogenous fluid de-
mixes into two distinctively separate liquid phases is re-
ferred to as LLPS (liquid-liquid phase separation). The
resulting liquid is made up of one dilute phase and one
condensed phase. An increasing number of studies have
shown that the liquid-liquid phase separation is an im-
portant principle that underlies intracellular organization
in biological systems, forming liquid condensates without
a membrane envelope, otherwise known as MLOs (mem-
braneless organelles). Such organelles include the P bod-
ies, nucleolus, and stress granules. Moreover, the
regulation of many other biological processes such as sig-
nal transduction, chromatin rearrangement, and RNA me-
tabolism has been linked to the liquid-liquid phase
separation [1].

A growing number of studies in recent years have
focused on the mechanism of phase separation of a
variety of biomolecules. Such studies have demon-
strated that some proteins, such as the RNA heli-
case DEAD-Box 4 (DDX4), P granule protein LAF-
1, transactive response DNA-binding protein (TDP-
43), and the RNA-binding FUS protein, can
undergo liquid-liquid phase separation both in vitro
and in vivo. The resultant liquid condensates from
the liquid-liquid phase separation process generally
are deemed as a product of multivalent weak inter-
actions between the numerous interacting motifs in
IDRs (intrinsically disordered regions) or multiple
folded domains. The LCRs (low complexity regions),
which are generally covered by the intrinsically dis-
ordered regions, are suggested to play very import-
ant roles in driving liquid-liquid phase separation
through Pi-Pi, hydrophobic, cation-Pi, and electro-
static interactions. These regions exhibit an over-
representation of specific amino acid residues
compared to the proteome proportion, such as the
proline-arginine (PR)/glycine-arginine (GR) repeats,
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arginine-glycine-glycine (RGG) motifs, and prion-
like domains [2].
The spike protein of the SARS-CoV-2 is an envelope

glycoprotein that contributes mostly during the attach-
ment process of the virus, its fusion, and host cell entry.
It is also an important target for the development of vac-
cines, neutralizing antibodies, and inhibitors of viral
entry. Its synthesis begins as a precursor protein which
is cleaved into an amino-terminal S1 subunit composed
of 700 amino acid residues and a carboxyl-terminal S2
subunit which is made up of 600 amino acid residues.
Both residues respectively mediate the attachment and
membrane fusion of the viral protein [3]. Our study is
targeted at the design of a novel drug-like compound
that can interfere with the molecular grammar that
governs the liquid-liquid phase separation of the SARS-
CoV-2 spike receptor-binding domain.

Methods
Trivedi et al. [4] described the phase separation-driven
inner centromere localization of the chromosomal
passenger complex (CPC) by borealin, where the two re-
gions making up the central disordered regions of the pro-
tein (as predicted by catGRANULE to display a high
phase separation propensity) were deleted. The variant
protein complex lacking this predicted borealin
disordered region was deficient in both DNA-induced and
spontaneous phase separation. We harnessed this ap-
proach in the prediction of the mechanism of action of

our designed novel SARS-CoV-2 spike receptor-binding
domain inhibitor. The inhibitor was designed through the
structural modification of 1,6-hexanediol (Fig. 1), an ali-
phatic alcohol which is known for its ability to disrupt
many phase-separated cellular organelles through the in-
hibition of weak hydrophobic interactions. Treatment of
the chromosomal passenger complex with this alcohol re-
duced its enrichment in the inner centromere and likewise
disrupted the in vitro coacervation of the ISB [4].
Waghorne et al. [5] described the design of novel che-

motherapeutic agents (N,N-bis(glycityl)amines) that were
prepared through the reductive amination of hexoses
and pentoses and were subsequently screened for anti-
cancer activity against cancerous virus. The amination
approach was applied in the development of our novel
inhibitor as shown in Fig. 1.

Results and discussion
A comparative drug-likeness prediction test was car-
ried out using in silico ADMET prediction tools
(SwissADME and pkCSM) [6, 7]. The predictive out-
come shows that both compounds share similar phar-
macokinetic and toxicity properties (Tables 1 and 2;
Fig. 2).
We directed a blind docking protocol towards the

antiviral activity prediction of our novel compound.
With this approach, the docked compound can interact
with its most suitable region on the surface of the pro-
tein (Fig. 3). The interacting residues were then used in

Fig. 1 SARS-CoV-2 spike receptor-binding domain inhibitor design (2D structure)

Table 1 Drug-likeness prediction

ADME parameters C6H16O2 C6H15NO2

Solubility Soluble Soluble

GI absorption High High

BBB permeant Yes No

P-gp substrate No No

Total clearance (log ml/min/kg) 0.516 0.87

Table 2 Drug toxicity prediction

Toxicity parameters C6H16O2 C6H15NO2

Hepatotoxicity Inactive Inactive

Carcinogenicity Inactive Inactive

Cytotoxicity Inactive Inactive

Mutagenicity Inactive Inactive
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the prediction of the phase separation perturbation
property of the compound.
As depicted in Fig. 4, five residues were involved in

the inter-model interaction: hydrophobic interaction
with lysine and tyrosine, and hydrogen bonding with
serine and glutamate, while arginine was involved in
both forms of interaction.
The phase separation propensity of the wild-type

SARS-CoV-2 spike receptor-binding domain was pre-
dicted using the catGRANULE algorithm [8] as de-
scribed by Trivedi et al. [4]. Following the amino acid
deletion approach as effected on borealin to give rise to
a mutant, we generated a variant of the viral protein
through the deletion of the interacting residues (Fig. 5)
and subjected it to the catGRANULE algorithm. Results
emanating from the predicted propensity score and

profile showed that the drug interacted with important
residues that drives the liquid-liquid phase separation,
hence the functionality of the viral protein. The residues
were also observed to fall within the intrinsically disor-
dered region of the protein (Fig. 6).
Wang et al. [9] used an extensive mutagenesis approach

in the identification of the sequence-encoded molecular
grammar that underlies the driving forces of the FUS fam-
ily proteins’ phase separation and concluded that it is pref-
erentially governed by multivalent interactions among
aromatic (tyrosine) and positively charged (arginine) resi-
dues. Based on the results from our in silico study, we
hereby hypothesize that the molecular grammar governing
the phase separation of the SARS-CoV-2 spike receptor-
binding domain requires a more robust multivalent inter-
action, as predicted result revealed different residues with

Fig. 3 a The docking grid which was set to cover the whole surface of the viral protein (PDB: 6LZG). b The surface interaction view of the
protein-drug complex

Fig. 2 Bioavailability radar, showing the pharmacokinetic property summary of the experimental compounds
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property variations (positively charged, negatively charged,
non-charged, and aromatic residues), but common to all
is their polarity.

Conclusion
We have computationally identified a novel inhibi-
tory drug-like compound (6-(aminooxy) hexan-1-ol)

against the SARS-CoV-2 spike receptor-binding do-
main through its predicted interaction with the
amino acid residues that drives the viral protein’s
liquid-liquid phase separation. The compound was
analyzed and predicted to possess satisfactory
physiochemical, ADME, and toxicity properties.
Findings from this study has shown that the

Fig. 4 Inter-model interaction between bound drug and surface amino acid residues of the viral protein. Thick blue lines depict hydrogen bond
interactions while gray broken lines depict hydrophobic interactions

Fig. 5 One-letter code amino acid sequence of the wild-type viral protein with the residues deleted to generate the variant, highlighted in red color
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compound has demonstrated drug-like attributes of
being a potential inhibitor to be optimized for trial
against the SARS-CoV-2 spike receptor-binding do-
main. We however recommend further experimental
assessment of the antiviral potential of this
compound.
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