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Abstract

This paper is one of the few attempts to use the optimal control theory
to find optimal quarantine strategies for eradication of the spread of the
COVID-19 infection in the Mexican human population. This is achieved
by introducing into the SEIR model a bounded control function of time
that reflects these quarantine measures. The objective function to be min-
imized is the weighted sum of the total infection level in the population
and the total cost of the quarantine. An optimal control problem reflecting
the search for an effective quarantine strategy is stated and solved analyti-
cally and numerically. The properties of the corresponding optimal control
are established analytically by applying the Pontryagin maximum princi-
ple. The optimal solution is obtained numerically by solving the two-point
boundary value problem for the maximum principle using MATLAB soft-
ware. A detailed discussion of the results and the corresponding practical
conclusions are presented.

Keywords: coronavirus; quarantine cost; Pontryagin maximum principal; opti-
mal control.

Resumen

En este trabajo empleamos la teoría de control óptimo para encon-
trar una cuarentena óptima y estrategias para la erradicación de la propa-
gación de la infección por COVID-19 en la población humana mexicana.
En un modelo SEIR, introducimos un control acotado que es una fun-
ción respecto del tiempo, la cual refleja las medidas de la cuarentena. La
función objetivo a minimizar es la suma ponderada del nivel total de in-
fección en la población y el costo total de la cuarentena. Planteamos un
problema de control óptimo que representa la búsqueda de una estrate-
gia eficaz de una cuarentena. Resolvemos este problema analíticamente y
numéricamente. Establecemos analíticamente las propiedades del control
óptimo correspondiente aplicando el principio del máximo de Pontryagin.
La solución óptima se obtiene resolviendo un problema de valor de fron-
tera de dos puntos asociado al principio del máximo. Usamos el software
MATLAB. Presentamos una discusión detallada de los resultados y las
correspondientes conclusiones prácticas.

Palabras clave: coronavirus; costo de una cuarentena; principio del máximo de
Pontryagin; control óptimo.
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1 Introduction

The coronavirus (COVID-19) pandemic is the number one topic worldwide.
This pandemic has literally affected all countries, and their authorities are try-
ing to take all possible (including emergency) measures to contain and fight this
virus: state border closures, quarantine, self-isolation, the termination of work
for many businesses and institutions, as well as the transition working and train-
ing at home. The regions most affected by the pandemic are the United States,
Brazil, Europe (Russia, Italy, Spain, Germany, France, the United Kingdom),
China, the Republic of Korea, and Iran ([32]).

In the fight against COVID-19, different countries are helped by various
mathematical models that can predict possible variants in the development of
the pandemic and the onset of its peak and duration, depending on the initial
data and measures to contain the disease. One of the most famous mathematical
tools for predicting the development of epidemics and taking appropriate meas-
ures for combating them is compartment models: SIR (Susceptible-Infectious-
Recovered) and SEIR (Susceptible-Exposed-Infectious-Recovered) ([2, 29]).

In contrast to previous epidemics associated with the spread of coronaviruses
(for example, SARS in 2003 to 2004 and MERS in 2012), the COVID-19 pan-
demic has two distinctive features:

• a long (more than 14 days) incubation period and

• a large number of asymptomatic patients who, having contacted coro-
navirus, do not demonstrate clinical manifestations, although they could
infect others.

These features make it necessary to modify the existing models. Currently, there
are many studies published as preprints and articles in which SIR and SEIR-
type models are proposed that consider the features of COVID-19. A detailed
analysis of their properties is provided, specific parameters of such models are
determined to describe the spread of the coronavirus infection in a particular
country or group of countries ([1, 4, 16, 21, 22, 30, 33]).

In addition, for each such model, the reproductive ratio R0 is calculated,
which is the basic characteristic of the coronavirus pandemic. For the COVID-
19 pandemic, this ratio takes the value between 2.0 and 6.0 ([3, 4, 17, 21, 24,
34, 35]). For any epidemic, it is known ([2, 29]) that with R0 < 1, the epidemic
gradually leaves, and with R0 > 1 the disease accompanying this epidemic
expands exponentially.
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In the framework of such SIR and SEIR-type models, attempts are made to
find the effective values of their parameters, reflecting, for example, quarantine
and self-isolation. At these values the current values of R0 decreases. In [26]
the Bayesian approach is employed to estimate model parameters and the value
R0 related with the study of the transmission of the COVID-19 in Mexico.

Usually mathematical modeling helps medical doctors and epidemiologists
to answer the following questions:

• How fast will the virus spread?

• How many people will get infected by COVID-19?

• If there are no vaccine and a reliable treatment, then how many will remain
uninfected?

• How long the pandemic will last and will there be the second wave of it?

On one hand, most people follow the rules, wear masks and stay at their
homes. On the other hand, especially recently, from TV screens and internet we
hear stories about huge unemployment and the damage that the virus caused to
the economies in all the countries, the government of which imposed “stay at
homes” order. We see people going on strikes demanding to reopen businesses,
go back to work and to a normal life style, even we all know that the virus has not
been eradicated yet. As an example, we hear about Sweden, a small (by the size
of the population) European country, that did not impose quarantine restrictions
at all and relied on so-called herd immunity of their citizens and their own self-
discipline and wise decision. While herd immunity is something to think about,
with high R0 = 4.0 that was reported in some regions of Italy, should we allow
75% of the citizen to get sick, knowing that some of them may never recover
from the disease? Is that OK to play Russian roulette with innocent people?

So, is there any optimal strategy which would simultaneously save the lives
and won’t sink the economy? The answer to this question can be obtained by
using optimal control theory, which has proven itself in the search for the optimal
intervention strategies for the 2014 Ebola epidemic ([14, 15]).

This paper is one of the few attempts to use the optimal control theory
to find optimal quarantine strategies for a SEIR-type model that describes the
spread of the coronavirus infection in the Mexican human population. This is
achieved by introducing into the model a bounded control function of time that
reflects these quarantine measures. The objective function to be minimized is
the weighted sum of the total infection level in the population and the total cost
of this quarantine (Section 2). In Section 3, the Pontryagin maximum princi-
ple is applied and the uniqueness and other important properties of the optimal
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control are established analytically. In Section 4, the model parameters are cal-
culated with respect to real COVID-19 data reported in Mexico between Febru-
ary 28 and May 21, 2020. These official data are divided into three time periods
(phase one, two and three). For each phase, we calculated the basic reproduc-
tive ratio with and without optimal control. In this section we also found the
maximum strength of the quarantine measures (the threshold value of unewmax) that
mathematically leads to R0 < 1 and would mean the end of the pandemic. It is
found that in order to eradicate the virus, there is not need for the optimal con-
trol to take its maximum values (for example, 0.95) but its value depends on the
current basic reproductive ratio in the region and changes from 0.5 − 0.83 for
R0 = 2.0−6.0, respectively. The optimal solutions are obtained numerically us-
ing a computer program written in MATLAB and their graphs are presented for
two months time period and two different basic reproductive ratios (R0 = 2.65
and R0 = 3.55) for Mexico and Mexico City, respectively. A detailed discussion
of the obtained results and the corresponding practical conclusions are presented
in Section 5.

2 Statement of the optimal control problem

At a given time interval [0, tf ], let us examine the spread of the virus in a human
population of size N(t) (not counting the deceased people), which is divided
into the five following compartments: susceptible people S(t), exposed people
E(t), symptomatic infected people I(t), asymptomatic infected peopleA(t) and
recovered people R(t). Hence, we imply the natural equality:

S(t) + E(t) + I(t) +A(t) +R(t) = N(t), t ∈ [0, tf ]. (1)

During the epidemic period, the population’s natural birth and death rate are
at a relatively low level. Therefore, we can exclude them from consideration.
Furthermore, we can consider the natural situation when the virus is imported
from outside. In addition, we will assume that at initial moment t = 0 there are
no recovered people.

Thus, the change in the size of the compartments is described by the follow-
ing system of differential equations:
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

S′(t) = −β̃S(t)(I(t) + νA(t)), t ∈ [0, tf ],

E′(t) = β̃S(t)(I(t) + νA(t))− ωE(t),

I ′(t) = (1− δ)ωE(t)− γI(t),

A′(t) = δωE(t)− ηA(t),

R′(t) = γI(t) + (1− q)ηA(t)

N ′(t) = −qηA(t),

(2)

with the corresponding initial conditions

S(0) = S0, E(0) = E0, I(0) = I0,

A(0) = A0, R(0) = R0, N(0) = N0.
(3)

We will assume that at the initial moment t = 0 the values S0, E0, I0, A0, N0

are positive and R0 = 0. Moreover, the equality

S0 + E0 + I0 +A0 = N0. (4)

holds, where N0 is the initial population size.
A system similar to (2) was used in [4] to describe the spread of the COVID-

19 virus among the Wuhan (China) population.
It is easy to see that firstly the equations of system (2) together with the initial

conditions (3) and equality (4) imply relationship (1), and, secondly, the value
N(t) varies (the decreases caused by disease-induced mortality).

In system (2), the incubation period of the human infection is defined as ω−1.
The infectious periods of I(t) andA(t) are defined as γ−1 and η−1, respectively.
The proportion of asymptomatic infection is defined as δ. The S(t) will be in-
fected through sufficient contact with I(t) and A(t), and the transmission rates
are defined as β̃ and νβ̃, respectively. Here we assume that the transmissibility
of A(t) is ν times that of I(t), where ν ∈ (0, 1). Moreover, we consider that the
values γI(t) and (1 − q)ηA(t) are the number of recovered individuals in I(t)
and A(t), respectively, and the value qηA(t) determines the number of people
who die from the disease. Here the value q ∈ (0, 1) sets the proportion of deaths
in ηA(t).

Let us perform the normalization of the phase variables for system (2) with
the initial conditions (3) using the following formulas:

s(t) = N−1
0 S(t), e(t) = N−1

0 E(t), i(t) = N−1
0 I(t),

a(t) = N−1
0 A(t), r(t) = N−1

0 R(t), n(t) = N−1
0 N(t).

Moreover, we introduce the new transmission rate β by the formula β = β̃N0.

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 28(1): 55–78, Jan–Jun 2021



OPTIMIZING THE QUARANTINE COST FOR SUPPRESSION OF THE... 61

As a result, we obtain the following system of equations:

s′(t) = −βs(t)(i(t) + νa(t)), t ∈ [0, tf ],

e′(t) = βs(t)(i(t) + νa(t))− ωe(t),

i′(t) = (1− δ)ωe(t)− γi(t),

a′(t) = δωe(t)− ηa(t),

r′(t) = γi(t) + (1− q)ηa(t)

n′(t) = −qηa(t),

(5)

with the corresponding initial conditions

s(0) = s0, e(0) = e0, i(0) = i0,

a(0) = a0, r(0) = 0, n(0) = 1,
(6)

where s0, e0, i0, a0. are positive and satisfy the equality

s0 + e0 + i0 + a0 = 1. (7)

following from (4).
Note that with this normalization the relationship (1) is converted to equality:

s(t) + e(t) + i(t) + a(t) + r(t) = n(t), t ∈ [0, tf ].

The important properties of solutions for system (5) are established by the
following lemma.

Lemma 2.1 Let system (5) with the initial conditions (6) have the solutions s(t),
e(t), i(t), a(t), r(t), n(t). They are then defined in the entire interval [0, tf ], and
are also positive and bounded on (0, tf ].

The Proof of this fact is standard, so we omit it. (For example, similar proofs
are given in [6, 19]). Lemma 2.1 implies that all solutions s(t), e(t), i(t), a(t),
r(t), n(t) for system (5) with the initial conditions (6) retain their biological
meanings for all t ∈ [0, tf ].

Let us introduce the control function u(t) into system (5). This control re-
flects the intensity of the quarantine and all indirect protective measures
(mask wearing, as well as various educational and informational campaigns),
which are set up in the population to limit the spread of the virus and are aimed
at the reduction of its transmission. In addition, we assume that there is no
vaccine and no drug available for the disease treatment. This control function
satisfies the restrictions:

0 ≤ u(t) ≤ umax < 1. (8)
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This leads to the following control system:



s′(t) = −β(1− u(t))s(t)(i(t) + νa(t)), t ∈ [0, tf ],

e′(t) = β(1− u(t))s(t)(i(t) + νa(t))− ωe(t),

i′(t) = (1− δ)ωe(t)− γi(t),

a′(t) = δωe(t)− ηa(t),

r′(t) = γi(t) + (1− q)ηa(t)

n′(t) = −qηa(t),

(9)

with the corresponding initial conditions (6).

Note that for u(t) = 0 (the absence of the quarantine measures) system (9)
becomes system (5) with the rate of virus transmission as β. When u(t) > 0 (the
presence of the quarantine), in system (9) such a transmission rate is reduced.

In constructing the control model (9), extensive experience has been used in
similar SEIR-type control models of Ebola epidemics ([11, 12, 13, 14, 15]).

Now, for formulating optimal control problem, let us introduce the set ∆(tf )
of all admissible controls, which is formed by all possible Lebesgue measurable
functions u(t) that for almost all t ∈ [0, tf ] satisfy restrictions (8).

Next, for the control system (9) in the set ∆(tf ) of all admissible controls,
we consider the objective function:

J(u(·)) = (e(tf )+ i(tf )+ a(tf ))+

tf∫
0

(e(t)+ i(t)+ a(t))dt+0.5α

tf∫
0

u2(t)dt,

(10)
where α is a positive weighting coefficient. The first two terms in (10) reflect
the level of disease in the population caused by COVID-19: the level at the end
of quarantine period [0, tf ] and cumulative level over the entire period. The last
term determines the total cost of the quarantine.

Since only phase variables e(t), i(t), a(t) are present in the objective func-
tion (10), then by considering these functions together with system (9), the last
two differential equations can be excluded from it.
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As a result, we state the following optimal control problem (OC problem)
consisting of minimizing the objective function (10) in the set ∆(tf ) of all
admissible controls for the system:

s′(t) = −β(1− u(t))s(t)(i(t) + νa(t)), t ∈ [0, tf ],

e′(t) = β(1− u(t))s(t)(i(t) + νa(t))− ωe(t),

i′(t) = (1− δ)ωe(t)− γi(t),

a′(t) = δωe(t)− ηa(t),

(11)

with the corresponding initial conditions

s(0) = s0, e(0) = e0, i(0) = i0, a(0) = a0, (12)

where s0, e0, i0, a0 are positive and satisfy equality (7).
Lemma 2.1 and the fulfillment of the easily verified condition of Theorem 4

(Chapter 4, [20]) guarantee for the OC problem the existence of an appropriate
optimal solution, which consists of the optimal control u∗(t) and the correspond-
ing optimal solutions s∗(t), e∗(t), i∗(t), a∗(t) to system (11).

3 Pontryagin maximum principle

For the analytical study of the OC problem, we use the Pontryagin maximum
principle ([25]). According to it, we first write down the Hamiltonian of this
problem:

H(s,e, i, a, ψ1, ψ2, ψ3, ψ4, u) = −β(1− u)s(i+ νa)(ψ1 − ψ2)

− ωe(ψ2 − (1− δ)ψ3 − δψ4)− γiψ3 − ηaψ4 − (e+ i+ a)− 0.5αu2,

where ψ1, ψ2, ψ3, ψ4 are the adjoint variables.
Next, for this Hamiltonian we calculate the required partial derivatives:

H ′
s(s, e, i, a, r, ψ1, ψ2, ψ3, ψ4, u) = −β(1− u)(i+ νa)(ψ1 − ψ2),

H ′
e(s, e, i, a, r, ψ1, ψ2, ψ3, ψ4, u) = ω(ψ2 − (1− δ)ψ3 − δψ4)− 1,

H ′
i(s, e, i, a, r, ψ1, ψ2, ψ3, ψ4, u) = −β(1− u)s(ψ1 − ψ2)− γψ3 − 1,

H ′
a(s, e, i, a, r, ψ1, ψ2, ψ3, ψ4, u) = −βν(1− u)s(ψ1 − ψ2)− ηψ4 − 1,

H ′
u(s, e, i, a, r, ψ1, ψ2, ψ3, ψ4, u) = βs(i+ νa)(ψ1 − ψ2)− αu.

Therefore, by the Pontryagin maximum principle, for the optimal control u∗(t)
and the corresponding optimal solutions s∗(t), e∗(t), i∗(t), a∗(t) to system (11),
there exists the vector-function ψ∗(t) = (ψ∗

1(t), ψ
∗
2(t), ψ

∗
3(t), ψ

∗
4(t), such that

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 28(1): 55–78, Jan–Jun 2021



64 A. CHOQUE-RIVERO — E. KHAILOV — E. GRIGORIEVA

• ψ∗(t) is the nontrivial solution of the adjoint system

ψ∗
1
′(t) = −H ′

s(s∗(t), e∗(t), i∗(t), a∗(t), r∗(t), ψ
∗
1(t), ψ

∗
2(t), ψ

∗
3(t), ψ

∗
4(t), u∗(t))

= β(1− u∗(t))(i∗(t) + νa∗(t))(ψ
∗
1(t)− ψ∗

2(t)),

ψ∗
2
′(t) = −H ′

e(s∗(t), e∗(t), i∗(t), a∗(t), r∗(t), ψ
∗
1(t), ψ

∗
2(t), ψ

∗
3(t), ψ

∗
4(t), u∗(t))

= ω(ψ∗
2(t)− (1− δ)ψ∗

3(t)− δψ∗
4(t)) + 1,

ψ∗
3
′(t) = −H ′

i(s∗(t), e∗(t), i∗(t), a∗(t), r∗(t), ψ
∗
1(t), ψ

∗
2(t), ψ

∗
3(t), ψ

∗
4(t), u∗(t))

= β(1− u∗(t))s∗(t)(ψ
∗
1(t)− ψ∗

2(t)) + γψ∗
3(t) + 1,

ψ∗
4
′(t) = −H ′

a(s∗(t), e∗(t), i∗(t), a∗(t), r∗(t), ψ
∗
1(t), ψ

∗
2(t), ψ

∗
3(t), ψ

∗
4(t), u∗(t))

= βν(1− u∗(t))s∗(t)(ψ
∗
1(t)− ψ∗

2(t)) + ηψ∗
4(t) + 1,

(13)
satisfying the corresponding initial conditions

ψ∗
1(tf ) = −J ′

s(tf )
= 0, ψ∗

2(tf ) = −J ′
e(tf )

= −1,

ψ∗
3(tf ) = −J ′

i(tf )
= −1, ψ∗

4(tf ) = −J ′
a(tf )

= −1.
(14)

• the control u∗(t) maximizes the Hamiltonian

H(s∗(t), e∗(t), i∗(t), a∗(t), ψ
∗
1(t), ψ

∗
2(t), ψ

∗
3(t), ψ

∗
4(t), u) (15)

with respect to u ∈ [0, umax] for almost all t ∈ [0, T ], and, therefore the follow-
ing relationship holds:

u∗(t) =


umax , if ϕ(t) > umax,

ϕ(t) , if 0 ≤ ϕ(t) ≤ umax,

0 , if ϕ(t) < 0.

(16)

Here the function ϕ(t) is the so-called indicator function ([27]), which is
defined from the formula

H ′
u(s∗(t), e∗(t), i∗(t), a∗(t), ψ

∗
1(t), ψ

∗
2(t), ψ

∗
3(t), ψ

∗
4(t), u) = 0

and is written as

ϕ(t) = α−1βs∗(t)(i∗(t) + νa∗(t))(ψ
∗
1(t)− ψ∗

2(t)). (17)

It determines the behavior of the optimal control u∗(t) according to
formula (16).

Now by formulas (14) and (17), we find the relationship

ϕ(tf ) = α−1βs∗(tf )(i∗(tf ) + νa∗(tf )),

which because of Lemma 2.1 implies the inequality ϕ(tf ) > 0. According to
formula (16), this means that the following lemma is true.

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 28(1): 55–78, Jan–Jun 2021



OPTIMIZING THE QUARANTINE COST FOR SUPPRESSION OF THE... 65

Lemma 3.1 The optimal control u∗(t) is positive for t = tf and takes either the
value of ϕ(tf ) or the value of umax.

Thus, based on this lemma, we can state that for any finite time interval, the
optimal protective measures are such that even at the very end the optimal control
is not zero. Hence, in absence of vaccine or effective medical treatment for
COVID-19, some protective measures (i.e. wearing masks and gloves, escaping
crowd) must remain in order or become people habits.

Next formula (16) shows that for all values of t ∈ [0, tf ], the maximum of
the Hamiltonian (15) is reached with a unique value u = u∗(t). Thus, the next
lemma immediately follows from Theorem 6.1 ([5]).

Lemma 3.2 The optimal control u∗(t) is a continuous function on the
interval [0, tf ].

We can rewrite formula (16) in a more suitable form:

u∗(t) = min{umax;max{0;ϕ(t)}}. (18)

As a result, systems (11) and (13) with the corresponding initial condi-
tions (12) and (14) together with relationship (18) form the two-point boundary
value problem for the maximum principle:

s′(t) = −β(1− u(t))s(t)(i(t) + νa(t)),

e′(t) = β(1− u(t))s(t)(i(t) + νa(t))− ωe(t),

i′(t) = (1− δ)ωe(t)− γi(t),

a′(t) = δωe(t)− ηa(t),

ψ1
′(t) = β(1− u(t))(i(t) + νa(t))(ψ1(t)− ψ2(t)),

ψ2
′(t) = ω(ψ2(t)− (1− δ)ψ3(t)− δψ4(t)) + 1,

ψ3
′(t) = β(1− u(t))s(t)(ψ1(t)− ψ2(t)) + γψ3(t) + 1,

ψ4
′(t) = βν(1− u(t))s(t)(ψ1(t)− ψ2(t)) + ηψ4(t) + 1,

s(0) = s0, e(0) = e0, i(0) = i0, a(0) = a0,

ψ1(tf ) = 0, ψ2(tf ) = −1, ψ3(tf ) = −1, ψ4(tf ) = −1,

u(t) = min
{
umax;max

{
0;α−1βs(t)(i(t) + νa(t))(ψ1(t)− ψ2(t))

}}
.

(19)
The optimal control u∗(t) satisfies this boundary value problem together with

the corresponding optimal solutions s∗(t), e∗(t), i∗(t), a∗(t) for system (11)
and the solutions ψ∗

1(t), ψ
∗
2(t), ψ

∗
3(t) and ψ∗

4(t) to the adjoint system (13).
Moreover, arguing as in [18, 23, 28], it is possible to establish the uniqueness
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of this control because of the boundedness of the state and adjoint variables, as
well as, the Lipschitz properties of systems (11) and (13) defining these variables
and relationships (18) that establishes such a control.

4 Numerical results and their discussion

For our numerical simulation, we employ the following values for the parameters

α = 0.0001 γ = 1/14 η = 1/21 δ = 0.2
ω = 0.18 ν = 0.1 q = 0.15.

(20)

These parameters were adjusted to fit the number of infected individuals in
Mexico during the period from February 28 to May 21, 2020.

In our model, February 28 is taken as the start of the pandemic. This ini-
tial time is also applied for our simulation with u = 0. For the simulation with
u = u∗, the initial time is taken as March 24. On this date, phase two of the
government’s contingency plan was announced, suspending all non-essential ac-
tivities. On April 21 the Mexican authorities implemented phase three of the
pandemic in order to reduce the movement of people in public spaces, imple-
menting social distancing.

The graphs in Figure 1 show the relation between the official reported data,
marked with dashed line, and the trajectory of our simulation, marked with solid
line of the infected population in Mexico. The graph on the left corresponds
to phase one (from February 28 till March 24), while the graph on the right
corresponds to phase three (from March 24 till May 21). We do not provide
the graph for phase two (from March 24 till April 21) because in this period the
official data was focused on the cumulated infected people and not on the active
infected people.

We use the basic reproductive ratio R0 to assess the transmissibility of the
virus. It is known ([29]) that this ratio shows the average number of people
that one contagious person can infect during the period of the disease, that is,
until complete recovery. If R0 < 1, then the epidemic will spread slowly, and
it will fade. Finally, it will die out. If R0 > 1, then the epidemic will occur,
and the disease will spread exponentially. What the specific value of R0 will
be, depends on the properties of the virus, the percentage of the population that
becomes immune to it (for example, by testing for antibodies to the virus), and
on the measures taken by the population to suppress the epidemic (for example,
social distancing and quarantine).
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Figure 1: Officially reported data and simulated behavior of the normalized number of
infected population during the phase one and phase three in Mexico.
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We find the value of R0 for system (5) by the next-generation matrix ap-
proach ([31]). This value is defined by the following formula:

R0 = β

(
1− δ

γ
+
νδ

η

)
. (21)

By using the required values from (20) in (21), we find the equality

R0 = 11.62 · β. (22)

Table 1 shows the values of the parameter β that depends on the value of R0

in accordance with formula (22). We select the value of R0 from {2.0; 2.5; 3.0;
3.5; 4.0; 6.0} because this ratio took the value between 2.0 − 4.0 in
Mexico ([7, 26]).

Table 1: Parameter β and threshold value unewmax depending on R0.

R0 β unewmax

2.0 2.0/11.62 = 0.172117 0.500000
2.5 2.5/11.62 = 0.215146 0.600000
3.0 3.0/11.62 = 0.258176 0.666667
3.5 3.5/11.62 = 0.318182 0.714286
4.0 4.0/11.62 = 0.363636 0.750000
6.0 6.0/11.62 = 0.545455 0.833333
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Now let us obtain the appropriate basic reproductive ratios R0(u) for the
control system (9), or, what is the same, for system (11) under the assumption of
constancy of the control. By using (21), we find the formula:

R0(u) = β(1− u)

(
1− δ

γ
+
νδ

η

)
= (1− u)R0. (23)

Next, we substitute the required values from (20) into the expression (23)
and then perform the necessary calculations for u = umax because we want to
see that with the maximum intensity of quarantine the epidemic will come to an
end. As a result, the following relationship is valid:

R0(umax) = 0.05 · 11.62 · β = 0.581 · β. (24)

It is easy to see that for all values of β given in Table 1 the inequality

R0(umax) < 1

holds. It means that by using the quarantine with the maximum intensity umax =
0.95, the epidemic will definitely end. In addition, it is clear that the value of
umax can be reduced, and an important problem arises of finding a threshold
value for umax.

The equality R0(u
new
max) = 1 and the last expression of (23) lead us to

the formula:
unewmax = 1−R−1

0 . (25)

By substituting the values of R0 from Table 1 for (25), we calculate the
corresponding threshold values unewmax, which are placed in the last column of
this table.

Next we provide numerical calculations for the boundary value problem (19),
which were performed using MATLAB software. For these numerical calcula-
tions, the values of the parameters for system (11), the weighting coefficient of
the objective function (10), and the control restriction from (8) given in (20) and
also provided in Table 1 were used.

In our calculations we focus only on Mexico and Mexico City.

4.1 Optimal control of COVID-19 related to Mexico

According to [9], in 2020 the population of Mexico is estimated to be N0 =
127792286. We use the following values for the initial conditions s0, e0, i0, a0
from (19):

s0 = 0.9999998122 (S0 = 127792262) e0 = 1.56504× 10−7 (E0 = 20)
i0 = 7.8252× 10−9 (I0 = 1) a0 = 2.34756× 10−8 (A0 = 3).
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We assume that during the first 26 days of the epidemic, no quarantine was en-
acted. In our simulation, the initial conditions for the control system are taken
from the values for s(t), e(t), i(t) and a(t) at t = 26. In Table 2 the official
data related to Mexico, the results of the simulation in the period of time from
February 28 till May 21 are provided.

Table 2: Confirmed active cases in Mexico between February 28 to May 21, 2020.

Data March 24 April 21 May 21
Official 405 3185 12905

Simulation with no control
403

R0 = 5.8
3191

R0 = 2.65
12571

R0 = 2.0
Simulation with u = u∗ 403 1802 1904

In the simulation, the values are the sum of symptomatic and asymptomatic
cases. The official data was adopted from [10]. The value of tf was taken from
{26; 54; 84}, which models twenty-six days, fifty-four and eighty-one days of
protective measures. On the second line, the basic reproductive ratio R0 = 5.8
corresponds to the period from February 28 till March 24. Similarly, R0 = 2.65
and R0 = 2.0 are related to the period from March 24 till April 21 and that from
April 21 till May 21, respectively. For the simulation with u = u∗, the basic
reproductive ratio R0 = 2.65 is employed.

4.2 Optimal control of COVID-19 in Mexico City

The population of Mexico City in 2020 is estimated by [8] to be N0 = 9018645.
We use the following initial conditions s0, e0, i0, a0 from (19):

s0 = 0.999997 (S0 = 9018621) e0 = 2.21763× 10−6 (E0 = 20)
i0 = 1.10881× 10−7 (I0 = 1) a0 = 3.32644× 10−7 (A0 = 3).

Table 3 shows the official data concerning Mexico City, the results of the
simulation related to equation (11) in the period of time {26; 54; 84}.

In the simulation, the values are the sum of symptomatic and asymptomatic
cases. The official data was adopted from [10]. The value of tf was taken from
{26; 54; 84}, which models twenty-six days, fifty-four and eighty-one days of
protective measures. On the second line, the basic reproductive ratio R0 = 2.75
corresponds to the period from February 28 till March 24. Similarly, R0 = 3.55
and R0 = 1.9 are related to the period from March 24 till April 21 and that from
April 21 till May 21, respectively. For the simulation with u = u∗, the basic
reproductive ratio R0 = 3.55 is employed.
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Table 3: Confirmed active cases in Mexico City between February 28 to May 21, 2020.

Data March 24 April 21 May 21
Official 66 883 3339

Simulation with no control
65

R0 = 2.75
854

R0 = 3.55
3294

R0 = 1.9
Simulation with u = u∗ 66 179 179

4.3 Graphs of s∗(t), e∗(t), i∗(t), a∗(t) and u∗(t)

The graphs in Figure 2 correspond to the optimal solutions s∗(t), e∗(t), i∗(t),
a∗(t) and optimal control u∗(t) at the basic reproductive ratio R0 = 2.65 related
to Mexico.

Figure 3 depicts the graphs of the optimal solutions s∗(t), e∗(t), i∗(t), a∗(t)
and optimal control u∗(t) at the basic reproductive ratio R0 = 3.55 related to
Mexico City.

We can see that the graphs presented in Figures 2 and 3 support our ana-
lytical investigation. In this section we found that the strength of the quarantine
measures can be reduced to the threshold value, unewmax that leads to R0 < 1 and to
eradication of pandemic. Thus, the optimal control does not take the values ex-
ceeding the calculated threshold values for each current ratio (of 0.62 and 0.718
for R0 = 2.65 and R0 = 3.55, respectively).

The optimal quarantine strategies for Mexico and Mexico City are quite sim-
ilar: at first, the optimal control takes its maximal constant threshold value in the
3-6 weeks (depending on the reported basic reproductive ratio) and then begins
to decrease according to almost linear law, remaining nonzero at the end of the
time interval.

It follows from the graphs of the optimal solutions, that there is also a sig-
nificant slowdown in the growth of infectious populations compared to those
without control. Under optimal control, the graphs of symptomatic and asymp-
tomatic infectious people are delayed in their exponential growth and instead
are getting flatten on the first half of the time interval. Moreover, the optimal
solutions are characterized by shifting in their future pick to the right and by
decreasing in its value.
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Figure 2: Mexico OC Problem: optimal solutions and optimal control for R0 =
2.65 and tf = 58 days: upper row: s∗(t), e∗(t), i∗(t); mid-
dle row: a∗(t), r∗(t), n∗(t); lower row: i∗(t) + a∗(t), e∗(t) + i∗(t) +
a∗(t), u∗(t).
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Figure 3: Mexico City OC Problem: optimal solutions and optimal control for R0 =
3.55 and tf = 58 days: upper row: s∗(t), e∗(t), i∗(t); mid-
dle row: a∗(t), r∗(t), n∗(t); lower row: i∗(t) + a∗(t), e∗(t) + i∗(t) +
a∗(t), u∗(t).
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5 Conclusions

In this paper, at a given time interval, a SEIR-type model that describes the
spread of the COVID-19 virus in a human population of variable size is consid-
ered. A bounded control function of time was introduced into the model, which
reflected the intensity of quarantine measures conducted in the population. This
control reflects all sorts of indirect measures (quarantine, mask wearing, and var-
ious educational and informational campaigns) aimed at reducing the possibility
of transmission of the virus from infected to healthy individuals. For the result-
ing control model, the optimal control problem was stated, which consisted of
minimizing the Bolza-type objective function.

The terminal part of this function determines the level of disease in the pop-
ulation caused by COVID-19 at the end of the quarantine period, and its integral
part is a weighted sum of the cumulative level of disease over the entire quaran-
tine period with the total cost of this quarantine.

A detailed analysis of the optimal solutions to the optimal control problem
was made using the Pontryagin maximum principle. The properties of the op-
timal control and its uniqueness were established. Thus, we proved that the
optimal control is nonzero even at the end of the time interval, which means
that some quarantine measures should never vanish. The values for the control
model parameters, based on the knowledge of the basic reproductive ratios, were
then taken.

The results of numerical calculations for Mexico and Mexico City performed
using MATLAB software support our analytical investigation. Thus, in this pa-
per we evaluate the maximum strength of the quarantine measures (the threshold
value, unewmax) that mathematically leads to R0 < 1 and to the end of the pan-
demic. It is found that in order to eradicate the virus, there is not need for the
optimal control to take its maximum value (there is no need for the strongest
quarantine) but its threshold value depends on the current basic reproductive ra-
tio in the region and changes from 0.5− 0.83 for R0 = 2.0− 6.0, respectively.
Therefore in each case the best results (optimal solutions) in the fight against the
pandemic can be achieved with less restrictions and costs.

By comparing the optimal solutions to those without control, it is clear that
the optimal strategy does “flattening the curve”. Under optimal control policy,
the curve of total infections is getting flatten, shifts to the right and the value of
its predicted maximum decreases significantly, which means that hospitals will
not be crowded to the maximum capacity with COVID-19 patients needed inten-
sive care. Delaying the pick of the infection and reducing its maximum would
help the government to escape catastrophe, prepare, to save the lives and to
reduce the costs.
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Additionally, based on our mathematical study, we can make the following
conclusions (recommendations).

• It is necessary to keep the strongest protective quarantine measures (self-
isolations, stay at home order) at the beginning of the planned period.

• The strength of the quarantine and of other protective measures must de-
pend on the reported official basic reproductive ratio and can differ from
country to country and from region to region.

• Any restrictions can be slowly reduced toward the end of the optimization
period of time tf .

• Some protective measures (wearing face masks or gloves, escaping close
contacts, etc.) should never vanish with the end of the time interval and
must become hygienic habits for the society.

It is our hope that by using optimal strategy many lives can be saved while
keeping the economy running.
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