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COVID-19 is caused by the novel severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), a pandemic virus that 
rapidly spread worldwide, killing over two million individu-

als as of February 2021 (World Health Organization1). Most indi-
viduals infected by SARS-CoV-2 are asymptomatic or have mild 
to moderate clinical symptoms2. However, a notable portion of 
infected individuals develop severe symptoms, including high fever, 
shortness of breath and muscle pain. The most severe cases of infec-
tion progress to acute respiratory distress syndrome, multiorgan 
failure and death. COVID-19 severity has been associated with lym-
phopenia3–5, elevated C-reactive protein6 and increased proinflam-
matory cytokines such as interleukin (IL)-1β7,8, IL-6 (refs. 9–12), IL-8 
(ref. 10) and tumor necrosis factor (TNF)9,10, indicating an ongoing 
systemic immune response. Several recent studies have character-
ized the altered composition of the immune cells in patients with 
COVID-19 compared to healthy or recovered patients13–15. In these 
studies, it remains unclear which emerging features are specific 
to COVID-19 and how many observations are shared with other 
inflammatory pathologies.

Compared to other respiratory infections, COVID-19 has sev-
eral unique features. The risk of progression to severe disease and 
mortality is greater in individuals with comorbidities like obesity, 
hypertension and diabetes16. Most strikingly, COVID-19 is charac-
terized by a profound age-associated susceptibility; individuals over 
65 years old have the highest infection fatality rate and account for 
more than 70% of COVID-19 deaths17–19. It is known that immune 

cell composition changes significantly with age, as does the environ-
ment, for example, the plasma proteome20. Therefore, understanding 
the COVID-19-driven immune response in the context of the aging 
immune system is critically important in determining why patho-
gens like SARS-CoV-2 more frequently initiate a severe clinical pre-
sentation in older individuals. However, a typical study design for 
immunophenotyping peripheral blood mononuclear cells (PBMCs) 
from COVID-19 includes only a comparison between middle-aged 
healthy or recovered individuals and patients with COVID-19 who 
are typically 60 years and older13,21,22.

In this study, we use clinical blood testing, mass cytometry 
and unbiased proteomics profiling of ~4,700 proteins to examine 
the phenotypic characteristics of plasma and PBMCs in nonobese 
individuals with respiratory distress with or without laboratory-
confirmed infection by SARS-CoV-2 (71 individuals) and compare 
these cohorts to samples from age-stratified healthy nonobese indi-
viduals (148 individuals from 25 to 80 years old).

Results
Study design and clinical cohorts. First, we considered individuals 
who presented with respiratory illness symptoms and had a phy-
sician-ordered SARS-CoV-2 test performed at the Barnes Jewish 
Hospital between 26 March 2020 and 28 August 2020 (Washington 
University 350 (WU350) cohort). Based on nasopharyngeal test-
ing by PCR with reverse transcription (RT–PCR), participants 
were defined as SARS-CoV-2 positive (CV; 140 females and 173 
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males) or SARS-Cov-2 negative (NCV; 98 females and 40 males; 
Fig. 1a). The population was heterogeneous for body mass index 
(BMI), where nearly half of individuals were moderately or severely 
obese (BMI > 33; Extended Data Fig. 1a). Given that obesity is a 
recognized risk factor for severe COVID-19 (ref. 16) and known to 
strongly impact immune and proteomic homeostasis23, we chose to 
minimize these confounding factors in our analysis and excluded 
participants with moderate and severe obesity. Our selected CV and 
NCV cohorts consisted of 80 individuals, with age and sex distri-

butions proportional to those of the nonobese individuals (53 CV 
individuals: median BMI, 25.5; interquartile range (IQR), 21.9–28.4; 
27 NCV individuals: median BMI, 27.3; IQR, 25.6–29.8; Extended 
Data Fig. 1b,c). We cannot conclusively rule out SARS-CoV-2 infec-
tion in participants with negative SARS-CoV-2 tests because the 
false-negative rate of the nasopharyngeal RT–PCR test is reported 
to be 0.018–0.33 (ref. 24); however, 13 of 27 NCV individuals were 
retested, and none of the retests was positive for SARS-CoV-2, and 
none of the 27 individuals had a subsequent hospital readmission. 
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Fig. 1 | Study outline and clinical characterization of healthy and COVID-19/non-COVID-19 cohorts. Blood panels were performed for the following 
cohorts: A (25–34 years), n = 36; B (35–44 years), n = 21; C (45–54 years), n = 16; D (55–65 years), n = 24; E (>65 years), n = 25; CV, COVID-19 (32–91 
years, 70.8 mean, 11.2 s.d.), n = 53; NCV, non-COVID-19 (32–87 years, 52.8 mean, 17 s.d.), n = 17. See Extended Data Fig. 1 for statistics related to b–d. a, 
Study outline. An asterisk represents four patients who had a BMI < 33. b–d, Selected WBC differentials (b); RBC, hemoglobin and platelet differentials (c); 
and clinical blood values (d) for cohorts A–E and CV/NCV cohorts. The lower and upper hinges of all box plots represent the 25th and 75th percentiles. 
Horizontal bars show the median value. Whiskers extend to values that are no further than 1.5 times the IQR from either the upper or the lower hinge. 
RDW, RBC distribution width; ER, emergency room.
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The most common diagnoses at discharge were pneumonia and 
chronic obstructive pulmonary disease (Supplementary Table 1). 
The majority of nonobese individuals with COVID-19 were males 
(~70%), and the average age was 71 years. The age of individuals 
without COVID-19 was distributed more broadly, with an average 
age of 55 years old (Fig. 1a and Extended Data Fig. 1c). We divided 
the participants with COVID-19 into three subgroups based on 
admission to an intensive care unit (ICU) and survival criteria: (1) 
CV_moderate, including individuals who were not admitted to the 
ICU during treatment, (2) CV_severe, including individuals who 
were admitted to the ICU, and (3) CV_deceased, including indi-
viduals who did not survive the illness (Supplementary Tables 2 and 
3 and Fig. 1a). Most individuals admitted to the ICU were assigned a 
severity score based on a time-weighted average of discharge readi-
ness25. Of note, our ICU-based definition of severity correlated well 
with known inflammation characteristics such as C-reactive pro-
tein levels (Extended Data Fig. 1e,f) and other common parameters 
of disease severity such as intubation and severity score (Extended 
Data Fig. 1d). Consistent with the known increase in COVID-19 
severity with age, the average age of the deceased cohort was higher 
compared to individuals with moderate or severe COVID-19 
(Supplementary Table 2 and Fig. 1a).

Age is a known susceptibility factor for COVID-19, and it also 
significantly affects the immune and proteomic homeostasis in 
healthy individuals20,26. Therefore, to discriminate the effect of aging 
from disease-associated changes, we expanded our study to include 
a cohort of 148 healthy nonobese individuals aged 25 to 80 years, 
divided into five age groups (ABF300 cohort; Fig. 1a and Extended 
Data Fig. 1d). These blood samples were collected before the 
COVID-19 pandemic as part of an ongoing study of healthy human 
aging. In total, we analyzed 219 samples using clinical blood tests, 
complete blood count differentials, mass cytometry immunostain-
ing (CyTOF) and plasma proteomics. Joint analysis of the healthy 
ABF300 cohort and the WU350 COVID-19 and non-COVID-19 
cohorts revealed unique age-specific and disease-specific features 
of immune and physiological responses to COVID-19.

Clinical laboratory characteristics. Complete blood count dif-
ferential analysis showed a statistically significant increase in the 
absolute numbers of white blood cells (WBCs) in NCV and non-
moderate CV groups (Fig. 1b; see Extended Data Fig. 1f for statisti-
cal evaluation between all groups). This increase was attributed to a 
statistically significant increase in numbers of neutrophils (adjusted 
P value (Padj.) < 0.001), while changes in lymphocyte and monocytes 
numbers did not reach statistical significance when comparing 
NCV and CV groups to the age-matched healthy control groups 
(Fig. 1b and Extended Data Fig. 1g). This observation is consistent 
with previous reports27,28, including the increase in immature gran-
ulocytes with disease severity14,29 (Fig. 1b).

We observed that red blood cell (RBC) count decreased within 
the oldest age group (A versus E; Padj. < 0.001) and that RBC count 
in NCV participants and individuals with moderate COVID-19 
did not statistically differ from corresponding age-matched values, 
while individuals with severe COVID-19 had a statistically lower 
RBC count compared to healthy individuals of any age (Fig. 1c; see 
Extended Data Fig. 1g for statistical evaluation between all groups). 
Similar alterations were observed for hemoglobin levels (Fig. 1c and 
Extended Data Fig. 1g). Strikingly, RBC distribution width was dis-
tinctly associated with COVID-19 at all severity levels relative to 
both healthy people and individuals without COVID-19 (Fig. 1c), 
consistent with previous works30,31. Lastly, platelet counts demon-
strated a decreasing trend that appeared specific to individuals with 
COVID-19, although it did not reach significance in our cohorts 
(Extended Data Fig. 1g).

Several biochemical parameters changed dramatically in an 
inflammation and/or COVID-19-specific manner. Albumin  

concentration, indicative of liver health, did not decrease with  
age, but it significantly decreased during inflammation, par-
ticularly in COVID-19 groups of all severity levels (Fig. 1d; see 
Extended Data Fig. 1h for statistical evaluation between all groups).  
Calcium significantly decreased in individuals with COVID-19 
compared to all ages of healthy controls and individuals with-
out COVID-19, consistent with previous reports32, yet our data  
show that individuals without COVID-19 demonstrated only a 
nonsignificant decreasing trend compared to healthy individu-
als (Fig. 1d). Of note, unlike other blood ions (potassium, sodium 
and chloride), calcium levels did not increase with age (Extended 
Data Fig. 2a,b). Biochemical measures indicative of kidney func-
tion showed patterns that were strikingly specific to individuals 
with COVID-19 and correlated with disease severity. Specifically,  
creatinine and urea nitrogen levels did not differ between healthy 
individuals and participants without COVID-19, while they 
increased progressively in individuals with COVID-19, with the 
highest levels reached in the deceased cohort (Fig. 1d). Notably, 
urea nitrogen levels, but not creatinine levels, were age dependent—
increasing with age within the healthy range (Extended Data Fig. 
2c,d). However, the significant urea nitrogen level increase in severe 
and deceased COVID-19 groups was not attributed to age, as the 
COVID-19-dependent increase was significant even when com-
pared to the oldest age group (Padj. < 0.05, CV_severe versus cohort 
E; Padj. < 0.001, CV_deceased versus cohort E; Extended Data Fig. 
1i). Other age-dependent biochemical properties observed in the 
healthy control cohort included C-peptide levels33, lactic acid dehy-
drogenase levels34, glucose35, thyrotropin36 and DHEA37 (Extended 
Data Fig. 2).

CyTOF analysis of peripheral blood mononuclear cells. To under-
stand changes in immune cell populations with the disease, we per-
formed mass cytometry (CyTOF) on PBMCs of 219 blood samples 
from the healthy and disease cohorts using 28 myeloid and lym-
phoid markers (Methods). A subset of target proteins was selected 
based on single-cell RNA sequencing (scRNA-seq) of PBMCs 
to maximize cellular subset resolution. Specifically, we included 
mucosal-associated invariant T (MAIT) cell and γδ T cell markers 
(TCRVA7.2 and TCRγδ, respectively) and antibodies to granzymes 
GZMK and GZMB because we38 and others39 have shown that these 
proteins discriminate two major effector memory T (TEM) CD8+ cell 
subpopulations. We identified the major cell populations such as T 
cells (CD4+ T cells, CD8+ T cells, γδ T cells and MAIT cells), B cells, 
natural killer (NK) cells and myeloid cells (Fig. 2a) using unsuper-
vised clustering and distribution of key lineage markers (Extended 
Data Fig. 3b and Methods).

Differences between the major cell subpopulations can be appre-
ciated directly from the distributions seen in cell density plots 
(Extended Data Fig. 3c). B cell proportions significantly increased 
in both SARS-CoV-2-positive and SARS-CoV-2-negative dis-
ease groups in line with previously reported results13 (Fig. 2b; see 
Extended Data Fig. 3d for statistical evaluation between all groups), 
indicating that this increase is a general characteristic of the immune 
response to pulmonary disease. Proportions of CD4+ T cells for 
NCV, CV_moderate and CV_deceased groups were decreased 
relative to age-matched healthy controls. A similar decrease in 
CD4+ T cell proportions during SARS-CoV-2 and influenza infec-
tion was recently reported40,41 (Fig. 2b and Extended Data Fig. 
3d). Proportions of CD8+ T cells were increased in the group with 
moderate COVID-19 compared to the age-matched healthy group 
(group E), while there was no statistically significant difference for 
severe and deceased individuals relative to healthy individuals of 
any age. Of note, within the healthy cohort, CD8+ T cells propor-
tions were significantly decreased in the oldest donors (group E; 
>65 years old) relative to younger groups. Next, we analyzed major 
immune cell populations individually (Fig. 2b).
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CD4+ cells. We performed dimensionality reduction and clustering 
based on the relevant subset of markers (Methods) and identified 
12 CD4+ T cell subpopulations (Fig. 2c,d). They included three sub-
sets of CD4+ TEM cells (that is, CCR7−CD45RO+) divided based on 
EOMES and TBET expression, two subpopulations of central mem-
ory T (TCM) CD4+ cells (that is, CCR7+CD45RO+) distinguished by 
the level of CD45RO expression (medium or low), two subpopu-
lations of regulatory T (Treg) CD25+ CD4+ cells (CD45RA positive 
and CD45RO positive), three subpopulations of naïve CD4+ T cells 

based on the combinatorial expression of CD25 and SELL (CD62L) 
and two subpopulations with generally low levels of both CD45RA 
and CD45RO surface markers, which we denoted as RAlowRO− (Fig. 
2c,d and Extended Data Fig. 4a). Changes in population structure 
associated with age and disease were evident from the density plots 
of individual groups (Fig. 2f). Multidimensional scaling (MDS), 
computed based on the cluster percentages, also demonstrated  
distinct age-dependent and disease-dependent sample separation 
(Fig. 2g).
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A decrease in naïve CD4+ T cells was one of the most prominent 
age-associated features, and this population was further diminished 
in individuals with pulmonary disease, both in SARS-CoV-2-positive 
and SARS-CoV-2-negative groups (Fig. 2h; see Extended Data  
Fig. 4b for statistical evaluation between all groups). Interestingly, 
the population of naïve CD4+ T cells lacking SELL surface expres-
sion was distinctly upregulated (see naïve SELL− population in Fig. 
2h; Extended Data Fig. 4b) in disease cohorts, likely comprising a 
transient population associated with an active immune response. A 
similar pattern was observed for a subset of TCM cells characterized 
by low levels of CD45RO expression (CM ROlow), which increased 
specifically in the disease conditions. Among the three subsets 
of TEM cells, the subpopulation lacking both TBET and EOMES 
(TBET−EOMES−CD4+) expression significantly increased in disease 
groups, likely indicating effector cells associated with the immune 
response. Proportions of CD4+ TEM cells that expressed both TBET 
and EOMES were specifically increased in moderate but not severe 
or deceased COVID-19-infection cohorts. This subpopulation of 
CD4+ T cell expresses cytotoxicity markers (GZMB and GZMK), 
which might be beneficial in disease progression. This population 
also appeared to accumulate with age, albeit the difference did not 

reach statistical significance (Fig. 3f and Extended Data Fig. 4b). 
This population likely corresponds to recently reported cytotoxic 
CD4+ T cells that dramatically increase in supercentenerians42.

Additionally, we identified a distinct CD4+ T cell subpopula-
tion, RAlowRO−CD25low, which progressively accumulated with age 
(Fig. 3f and Extended Data Fig. 4b). To our knowledge, this is the 
first time this cell population has been defined as age dependent. 
Interestingly, this population was increased in individuals with 
severe COVID-19 but not in those with moderate or no COVID-19,  
compared to younger controls (that is, group A or B; Extended Data 
Fig. 4b).

Taken together, the CD4+ T cell compartment demonstrates age-
associated (increase in RAlowRO−CD25low, loss of naïve cells, increas-
ing trend of TBET+EOMES+ and central memory populations) and 
inflammation-associated remodeling, where its key features (fur-
ther loss of conventional naïve cells, increase in TBET−EOMES−, 
CD45ROlow and naïve SELL− cells) appear to be associated with the 
respiratory pathology immune response rather than COVID-19- 
specific responses, with the possible exception of the TEM TBET+ 
EOMES+ subpopulation which increases strongly in individuals 
with moderate COVID-19.
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Fig. 3 | CD8+ T cells in COVID-19/non-COVID-19 groups lose the conventional effector memory phenotype, with a COVID-19-specific increase in HLA-
DR+CD38+ CD8+ T cells. Cohorts: A, n = 38; B, n = 28; n = 20; D, n = 29; E, n = 33; NCV, n = 17; CV_moderate, n = 18; CV_severe, n = 18; CV_deceased, n = 12. 
a, UMAP plot of all CD8+ T cells, colored by the cluster. b, Heat map of normalized gene expression for all genes used for CD8+ T cell analysis, per cluster. 
c, UMAP plots with the expression of selected markers. d, UMAP density plots characterizing the distribution of CD8+ T cells across conditions. e, MDS 
projection for all samples, colored by cohort. For each sample, cluster percentages were used to perform MDS. f, Cell proportions of each CD8+ T cell cluster 
across cohorts. See Extended Data Fig. 5 for statistics related to f. The lower and upper hinges of all box plots represent the 25th and 75th percentiles. 
Horizontal bars show the median value. Whiskers extend to values that are no further than 1.5 times the IQR from either the upper or the lower hinge.
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CD8+ cells. CD8+ T cells demonstrated the most striking remodel-
ing in healthy aging and inflammatory contexts (Fig. 3). In total, we 
identified ten CD8+ T cell clusters (Fig. 3a–c and Extended Data 
Fig. 5a). In addition to naïve and CD8+ TCM cells, we defined eight 
distinct subpopulations of the CD8+ TEM cells—five subpopulations 
in healthy individuals and three subpopulations that arise during 
disease conditions (Fig. 3d–f and Extended Data Fig. 5b). MDS 
plots and density plots demonstrated distinct CD8+ compartment 
remodeling associated with aging and disease (Fig. 3d,e). Consistent 
with the published scRNA-seq data39 and our previous observa-
tions38, CD8+ TEM cells can be divided into two major populations 
based on expression of GZMK and GZMB (Fig. 3c). In healthy indi-
viduals, GZMB-expressing CD8+ TEM cells were mostly CD45RA 
positive, identifying them as TEMRA, and were divided into CD27+ 
(4.1% ± 3.7% of total CD8+ T cells) and CD27− (9.4% ± 10.8% of 
total CD8+ T cells) subpopulations (Fig. 3b,c). We recently dem-
onstrated that proportions of GZMK+CD8+ T cells among the total 
CD8+ T cells increase during healthy aging38. However, surface 
markers distinguishing this population remained unclear. Here, 
we find that GZMK+CD8+ TEM cells can be identified by the sur-
face expression of CCR5 and are predominantly CD57 negative  
(Fig. 3b,c and Extended Data Fig. 5d). These data further extend 
our previous observation to highlight the gradual age-dependent 
increase in GZMK+CD8+ TEM cells. Additionally, healthy aging was 
accompanied by a substantial decrease in naïve cells, a significant 
progressive increase in TCM cells and an increasing trend of TEMRA 
cells, although the latter did not reach statistical significance (Fig. 
3f; see Extended Data Fig. 5b for statistical evaluation between all 
groups). This observation extends our previous work, in which the 
proportion of GZMK+CD8+ T cells among the total CD8+ T cell 
population was shown to increase with age based on a comparison 
of young and old populations38. In addition to these age-dependent 
cell populations, two distinct PD-1-positive subsets were pres-
ent in the healthy individuals, each at ~5% of total CD8+ T cells: 
GZMB+GZMK− and GZMB+GZMK+ TEM cells (Fig. 3f). These cell 
subpopulations were characterized by a PD1+CD57+CD45RA− phe-
notype, yet they differed in the expression of CD27 (Fig. 3c). These 
cell subpopulations were present at steady levels across the aging 
subgroups (Fig. 3f).

The disease-associated inflammatory response was accompa-
nied by a pronounced remodeling of the CD8+ T cell compartment. 
Three major cell populations emerged in disease groups (Fig. 3f). 
The largest increase was observed for inflammatory GZMB+GZMK− 
and GZMB+GZMK+ T cells that differed from the corresponding 
healthy counterparts (TEMRA and TEM GZMK+ T cells, respectively) 
in that they lost CD45RA and CD27 surface expression (Fig. 3b,c). 
Lack of surface expression of CD45RA, CD27, CD28 and PD-1 
proteins indicated that these could be effector cells43. Appearance 
of these cell populations was a shared feature of all individuals 
independent of COVID-19 status. However, an additional inflam-
matory cell population characterized by expression of HLA-DR, 
CD38 and PD-1 was found almost exclusively in individuals with 
COVID-19. The appearance of this cell population was recently 
reported13,44, but specificity to the COVID-19 immune response 

versus non-COVID-19 respiratory pathology immune response has 
not yet been established. The increase in these three inflammation-
specific cell populations was paralleled by a decrease in the con-
ventional steady-state subpopulations: TEMRA subpopulations and 
GZMK-expressing TEM subpopulations decreased to very low levels 
in all inflammatory groups (Fig. 3f). Interestingly, unlike in CD4+ 
T cells, naïve CD8+ T cells did not significantly decrease compared 
to corresponding age-matched controls (CV/NCV groups com-
pared with E cohort; Fig. 3f and Extended Data Fig. 4b). This result 
suggests that, in this context, effector CD8+ T cells may arise from 
TEM subpopulations, for example, GZMK+ TEM cells acquiring the 
GZMK+GZMB+ inflammatory T (TINFLAM) phenotype and GZMB+ 
TEMRA cells acquiring the GZMK−GZMB+ TINFLAM phenotype.

Taken together, we find that peripheral blood CD8+ T cells 
undergo major remodeling during both healthy aging and inflam-
matory contexts. During aging, there is a loss of naïve cells and an 
increase of TCM and GZMK+ TEM cells. Inflammatory remodeling is 
characterized by a decrease in conventional TEM subpopulations and 
an increase in inflammatory effector-like subpopulations and HLA-
DR+CD38+PD-1+ CD8+ T cells, which are specific to individuals 
with COVID-19.

NK cells, B cells and myeloid cells. NK cells were split into 11 sub-
populations based on the expression of CD16, CD57, CD56, GZMK 
and SELL (Fig. 4a–c and Extended Data Fig. 6a). There was major 
inflammatory-associated remodeling of NK cells (Fig. 4d,e), as 
seven clusters demonstrated a difference between the healthy group 
and at least one inflamed group: CD56+CD57−GZMK+ (enriched 
in CV_moderate group), CD56−CD57−CD16− (enriched in disease 
groups except for CV_severe), CD56dimCD57+CD16− (enriched in 
NCV group) and CD56dimCD57low (enriched in NCV and CV_mod-
erate groups; Fig. 4f and Extended Data Fig. 6b). Two clusters did 
not change with age but significantly decreased across all disease 
cohorts: CD56+CD57low and CD56+CD57+ (Fig. 4f; see Extended 
Data Fig. 6b for statistical evaluation between all groups). The 
CD56+CD57+SELL+ cluster showed a similar decreasing pattern but 
did not reach statistical significance. Only one cluster changed sig-
nificantly with age: the CD56+CD57−SELL+ cluster decreased with 
age (cohort E was significantly lower than cohort A; Extended Data 
Fig. 6b), yet it did not change with inflammation. This observation 
is consistent with previous reports of a decrease in CD56+ NK cells 
with age45 (Extended Data Fig. 6c).

Our panel included a limited number of markers to resolve B 
cell subpopulations. B cells separated into six clusters (Fig. 4g–i) 
with no significant change detected in these subpopulations across 
age subgroups (Extended Data Fig. 6e), and there was no clear 
separation between samples in the MDS plot (Fig. 4k). However, 
the density plots indicated some inflammation-associated remod-
eling (Fig. 4j). Specifically, consistent with previous reports13, we 
observed an increase in CD27+CD38+ plasmablasts in individuals 
with severe COVID-19 (in comparison with age-matched healthy 
E cohort; Fig. 4l; see Extended Data Fig. 6e for statistical evalua-
tion between all groups). This cell subpopulation is specific to  
individuals with severe COVID-19 and was not significantly differ-

Fig. 4 | Inflammatory remodeling of NK and B cells. Cohorts: A, n = 38; B, n = 28; C, n = 20; D, n = 29; E, n = 33; NCV, n = 17; CV_moderate, n = 18; 
CV_severe, n = 18; CV_deceased, n = 12. a, UMAP plot of all NK cells, colored by the cluster. b, Heat map of normalized gene expression for all genes 
used for NK cell analysis, per cluster. c, UMAP plots with the expression of selected markers. d, UMAP density plots characterizing the distribution of 
NK cells across conditions. e, MDS projection for all samples, colored by cohort. For each sample, cluster percentages were used to perform MDS. f, Cell 
proportions of each NK cell cluster across cohorts. g, UMAP plot of all B cells, colored by the cluster. h, Heat map of normalized gene expression for all 
genes used for B cell analysis, per cluster. i, UMAP plots with the expression of selected markers. j, UMAP density plots characterizing the distribution of 
B cells across conditions. k, MDS projection for all samples, colored by cohort. For each sample, cluster percentages were used to perform MDS. l, Cell 
proportions of each B cell cluster across cohorts. In f and l, the lower and upper hinges of all box plots represent the 25th and 75th percentiles. Horizontal 
bars show the median value. Whiskers extend to the values that are no further than 1.5 times the IQR from either the upper or the lower hinge. See 
Extended Data Fig. 6 for statistics related to f and l.
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ent between healthy individuals and those without COVID-19. The 
B cell memory population, defined as CD27+CD38−SELL+, demon-
strated a COVID-19-specific decrease in proportions among the B 
cells (statistically significant for individuals with severe COVID-19 
versus participants in all age groups).

Myeloid cells demonstrated remodeling associated with infection 
(Extended Data Fig. 7a–d): proportions of classical monocytes and 
dendritic cells significantly decreased while proportions of HLA-
DRlow monocytes significantly increased in the disease cohorts rela-
tive to healthy controls (Extended Data Fig. 7e,f). This DRlow subset 
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was previously associated with an immunosuppressive monocyte 
phenotype46, consistent with the general features of immunosup-
pression reported for COVID-19 recently47.

Protein signatures of disease linked to healthy aging. Next, 
we used the SomaScan assay to analyze the proteomic signature 
from CV and NCV groups (WU350) and the healthy aging cohort 
(ABF300). SomaScan quantifies ~4,700 proteins in relative units 
of intensity, allowing data comparison within homogeneously col-
lected and processed samples (Supplementary Tables 4 and 5). One 
caveat of our study was that samples for the cohorts were collected 
using different collection approaches: WU350 samples were col-
lected in EDTA tubes, and ABF300 samples were collected in hep-
arin tubes. While this did not affect the measurement of cellular 
proportions, proteomic data from the cohorts was required to be 
analyzed first within each cohort and then individual aging/disease 
signatures could be compared across cohorts.

The comparison of CV and NCV groups identified 435 upreg-
ulated proteins in individuals with COVID-19 and 464 upregu-
lated proteins in individuals without COVID-19 (Fig. 5a). Most of  
these differences were driven by the severe and lethal cases of 
COVID-19 (Fig. 5b). Overall, the up/down COVID-19-specific 
signatures demonstrated a progressive increase/decrease with  
disease severity (Fig. 5c,d). The same pattern emerged when  
each COVID-19 cohort was compared to individuals without 
COVID-19 (Extended Data Fig. 8a–c). A relatively small number 
of proteins were differentially expressed between the NCV and 
CV_moderate disease groups (20 CV-specific and 7 NCV-specific 
upregulated proteins; Fig. 5b and Extended Data Fig. 8d). Proteins 
upregulated in the CV group (Fig. 5c) included complement protein 
C9; interferon response markers MX1, ISG15 and IFIT3; ferritin 
subunits FTL and FTH1; heparin-binding growth factors pleiotro-
phin (PTN) and midkine (MDK); growth factors CLEC11A, 
HAMP, TINAGL1 and SFRP1; inflammation-associated soluble 
factors serum amyloid a1 (SAA1), fibrinogen like protein (FGL1) 
and granulin (GRN); soluble forms of surface receptors FOLR2 and 
members of CD85 family (LILRB2 and LILRA3); and two additional 
proteins CHST12 and DKK3 (Fig. 5d). Notably, FGL1 and LILRA3 
have the potential to directly negatively impact CD8+ T cell activity 
by engaging with LAG3 or interfering with human leukocyte anti-
gen (HLA) class I/II accessibility48,49. The proteins upregulated in 
NCV groups (Fig. 5e,f) compared to individuals with COVID-19  
included AHSG (fetuin-A), KLRC4, CLEC3B, afamin (AFM)  
and others.

Given the different distribution of ages between the pulmonary 
disease cohorts, we next examined the degree to which age-related 
proteomic changes shape this behavior. Comparison of young (A) 
versus old (E) subgroups of the aging cohort revealed 241 proteins 
that were statistically upregulated with age and 140 downregulated 

proteins (Fig. 5g). Our data are consistent with the results previously 
published from our group and others26,50–54: proteins most upregu-
lated with age were GDF15, SOST and ADAMTS5, as well as PTN, 
TAGLN, TREM2, WISP2, MYL3 and MLN, while most down-
regulated proteins included RET, SELL and KIT, as well as MSMP, 
CILP2, CTSV and CR2 (Extended Data Fig. 8e). Because we also 
characterized our cohorts using clinical blood tests, we compared 
proteomics data with the blood biochemistry analyses obtained 
for the same individuals from the healthy aging cohort (Fig. 1a 
and Supplementary Tables 6–10). A number of measured proteins 
strongly correlated with the clinical blood test results (Extended 
Data Fig. 8f): (1) creatinine kinase strongly correlated with plasma 
levels of SLC26A7, CKB, ACTN2, TNNI2 and MYBPC1; (2) clini-
cal alanine aminotransferase levels correlated with plasma levels 
of UGDH, ALDH1A1, ASL, ALDOB, PSAT1, ACY1, FBP1 and 
DCXR1; (3) C-peptide and insulin levels strongly anti-correlated 
with IGFBP1 and ADIPOQ (as expected, insulin levels measured 
by clinical blood test strongly correlated with insulin levels ana-
lyzed via SomaScan profiling); (4) clinical measurements of direct 
high-density lipoprotein cholesterol levels positively correlated with 
EHMT2 protein levels and anti-correlated with WNT5A protein 
levels, while the latter (5) also correlated with general triglyceride 
levels; (6) clinical osteocalcin levels were strongly correlated with 
plasma levels of CHAD protein; (7) clinical thyrotropin hormone 
levels strongly correlated with the corresponding protein (CGA/
TSHB) levels in the proteomic data; (8) and lastly, clinically mea-
sured unsaturated iron binding capacity was strongly correlated 
with FTL/FTH1 and NEO1 protein levels. While this high level of 
concordance does not imply that SomaScan-based profiling can 
substitute for clinical measurements, it demonstrates the capability 
of unbiased profiling in characterizing the physiological state.

Gene-set enrichment analysis (GSEA) analysis demonstrated 
that the COVID-19 versus non-COVID-19 differentially expressed 
proteins strongly associated with the up/down aging signatures, con-
sistent with the differences in the age distribution of those cohorts 
(Fig. 5h,i). Furthermore, we found that the COVID-19 versus non-
COVID-19 signatures significantly overlapped with the up/down 
aging signatures (Fig. 5j,k) but not vice versa (Extended Data Fig. 
8g,h), underscoring the importance of taking age into account when 
considering determinants of COVID-19. We found 337 unique pro-
teins that were upregulated in COVID-19 and 421 proteins that were 
downregulated in individuals with COVID-19 compared to those 
without COVID-19 that were not age dependent. Age-associated 
proteins that were also significantly different in the COVID-19 ver-
sus non-COVID-19 comparison included PTN, SFRP1 and DKK3, 
which increased with age, and CLEC3B, which decreased with age. 
It is interesting to note the dissimilar age-associated behavior of two 
heparin-binding proteins (MDK and PTN) that were both upregu-
lated in the COVID-19 group relative to the non-COVID-19 group 

Fig. 5 | SomaLogic plasma protein profiling demonstrates age-specific and inflammation-specific signatures in individuals with COVID-19. Cohorts: 
A, n = 42; B, n = 27; C, n = 18; D, n = 29; E, n = 34; NCV, n = 27; CV_moderate, n = 18; CV_severe, n = 21; CV_deceased, n = 14. a,b, Volcano plot for 
differential expression of 4,801 proteins between NCV and all CV cohorts (a) or CV_moderate, CV_severe and CV_deceased cohorts separately (b). 
Protein names for the top ten upregulated and downregulated genes are shown. c,e, Box plot of average expression per sample of proteins upregulated 
(c) or downregulated (e) in CV cohorts compared to NCV cohort, across CV/NCV cohorts. d,f, Box plot with the scaled expression of selected proteins, 
upregulated (d) or downregulated (f) in the CV cohort compared to NCV, across CV/NCV cohorts. Genes that are differentially expressed with age 
are marked in red. g, Volcano plot for differential expression of 4,801 proteins between cohorts A and E. Protein names for the top ten upregulated and 
downregulated genes are shown. h,i, GSEA of all proteins upregulated (h) or downregulated (i) with age (cohorts E versus A) in proteins ranked according 
to differential expression between CV/NCV cohorts. j,k, Overlap between proteins upregulated (j) or downregulated (k) with age (cohorts E versus A) 
compared to proteins upregulated in COVID-19-related inflammation (CV versus NCV comparison). P values are one-sided and adjusted for multiple 
testing using the Benjamini–Hochberg method (Padj.). NES, normalized enrichment scores. l, Box plot with the scaled expression of selected genes in 
cohorts A–E. Genes that are differentially expressed with age are marked in red. In c–f and l, the lower and upper hinges of all box plots represent the 25th 
and 75th percentiles. Horizontal bars show the median value. Whiskers extend to the values that are no further than 1.5 times the IQR from either the 
upper or the lower hinge. In a, b and g, P values and log fold change values were calculated using the limma package (two-sided test). Significant genes 
were selected after correction for multiple testing using the Benjamini–Hochberg method.
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(Fig. 5l). Consistent with our data, PTN was previously associated 
with aging52, while MDK does not change with age, yet serum con-
centrations of MDK are linked to heart injury conditions55. Another 
protein associated with age and COVID-19, SFRP1, a soluble media-
tor of WNT signaling, has also been linked to modulation of car-
diac function56. Another WNT signaling modulator, DKK3, was 
previously linked to aging and is considered a major indicator of 
muscle atrophy57. A small number of proteins behaved in the oppo-
site manner between aging and COVID-19 (11 upregulated with 

CV and downregulated with age, and 7 vice versa), which included 
inflammatory mediators (CCL21 and SEMA4A) or apolipoproteins 
(APOA4 and APOE2; Extended Data Fig. 8g,h).

COVID-19 protein profile linked to hepatocytes and muscle 
secretomes. To understand the broad-level differences between 
individuals with COVID-19 and individuals without COVID-19, 
we performed pathway enrichment analysis on the differential  
proteins. Several pathways were upreguated or downregulated in a 
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disease-specific manner (Fig. 6a). The pathways most upregulated 
in individuals with COVID-19 were associated with extracellular 
matrix proteins (for example, WISP2 and FBLN5) and were also 

profoundly associated with age (Fig. 6b,c). Similarly, soluble forms of 
TREM2 and IGFBP2 were increased in individuals with COVID-19 
and older healthy individuals. Several COVID-19-specific pathways 
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were independent of aging signatures and included inflammatory 
processes (interferon, IL-6 and IL-2/stat5), complement pathways 
and glycosaminoglycan metabolism (Fig. 6d,e). Conversely, proteins 
from MAP kinase-associated pathways were downregulated in the 
plasma of individuals with COVID-19 relative to that of individu-
als without COVID-19. These proteins were mostly independent of 
age and included MAP2K3, BRAF, HRAS and MAP2K4. (Fig. 6f,g).

We next evaluated if cell-type-specific signatures of PBMC 
subpopulations are enriched in the COVID-19-specific proteome. 
None of the individual cell types were enriched; however, a myeloid 
signature (monocytes and neutrophils) was indeed upregulated 
in individuals with COVID-19 (Extended Data Fig. 8). To further 
investigate cell-type specificities, we extracted tissue-specific tran-
scriptional signatures from the Genotype-Tissue Expression (GTEx) 
database (Fig. 7a; see Methods for details and Supplementary Table 
11 for list of genes) and evaluated these signatures against the pro-
teomic data ranked by the comparisons of CV versus NCV groups or 
by aging comparison (A versus E cohorts; Fig. 7b). Individuals with 
COVID-19 had a pronounced increase in liver-specific proteins 
accompanied by a significant decrease of muscle-specific proteins. 
These tissue-associated changes were unique to the COVID-19 
cohort and did not vary with age. Instead, artery/aorta-specific pro-
teins were highly upregulated with age (Fig. 7b).

Given the distinct enrichment of these tissues, we mined pub-
lic scRNA-seq data for the liver58 and aorta59 to understand if any 
specific cell type is driving these signatures. When projecting 54 
liver-specific genes enriched in the comparison of CV and NCV 
groups, we observed a very strong specificity to hepatocytes (Fig. 
7c–e), indicating an important role in regulating plasma protein 
level alterations in COVID-19 infection. The artery/aorta-specific 
signature enriched in aging also demonstrated cell-type-specific 
enrichment in smooth muscle cells (Fig. 7f–h).

Discussion
Given the strong impact of age on COVID-19 pathogenesis, it is crit-
ically important to consider patient response alongside correspond-
ing age-matched controls. In this work, we show cellular and secreted 
protein determinants of individuals with COVID-19 in the context 
of aging. To understand features that are specific to the COVID-19 
immune response as opposed to the respiratory pathology immune 
response, we ensured that our pulmonary cohort included individ-
uals who tested negative and positive for SARS-CoV-2. The most 
pronounced changes included remodeling in CD4+ and CD8+ T cell 
compartments shared between individuals who tested positive for 
COVID-19 and those who tested negative for COVID-19 and the 
emergence of the COVID-19-specific populations of CD8+ T cells 
(HLA-DR+CD38+) and B cells (CD27+CD38+). The emergence of 
these populations was recently identified in patients with COVID-19  
(refs. 13,44), albeit the cohort design used in these studies could not 
directly establish the specificity of these subsets to COVID-19  
as opposed to non-COVID-19 pathologies. We find that the 
TBET+EOMES+ subpopulation of CD4+ T cells (also marked with 
the expression of cytotoxic marker GZMB) was highly specific to 
moderate but not severe or lethal COVID-19 groups. Given that 

our cohorts included pulmonary patients with similar symptoms 
who tested negative for SARS-CoV-2, we directly demonstrated the 
speci ficity of these subsets and separated them from other inflamma-
tory immune cell subpopulations. An important aspect of our study 
is that we considered a control cohort across multiple age groups, 
whereas in most studies to date, there is a significant difference 
between the ages of healthy cohorts and patients with COVID-19.  
Accordingly, our data demonstrate that the reported decrease in 
some immune subpopulations (for example, total CD8+ T cells) 
is likely a reflection of the age-associated difference in the naïve 
CD8 T cell population rather than a specific characteristic of the 
COVID-19 immune response.

Proteomics analysis revealed strong age-dependent effects within 
the disease signatures in addition to several disease-associated mark-
ers that have not been previously reported (for example, CLEC11A 
and MDK). We have found divergent cell-specific and tissue-spe-
cific signatures that differed between infection status and aging. 
Specifically, there was major dysregulation of hepatocyte and skeletal 
muscle secretomes during COVID-19 infection, while healthy aging 
was associated with heart smooth muscle cell-associated signatures. 
Taken together, our data show distinct age-specific and disease-
specific alterations and provide a new insight into potential soluble 
mediators of the physiological impact of COVID-19.

Methods
Experimental model and participant details. Sample collection. The WU350 
study is a prospective observational cohort study of participants with symptoms 
consistent with COVID-19 who presented to Barnes Jewish Hospital, St. Louis 
Children’s Hospital or affiliated Barnes Jewish Hospital testing sites located in 
Saint Louis. All individuals provided written informed consent to participate in 
the study. Inclusion criteria required that participants were symptomatic and had a 
physician-ordered SARS-CoV-2 test performed during their normal clinical care. 
Some participants were enrolled before the return of the SARS-CoV-2 test result. 
Enrolled participants who tested negative for SARS-CoV-2 are included in the 
current paper as non-COVID-19 respiratory illness controls. Information about 
follow-up tests of individuals who tested negative for SARS-CoV-2 was collected 
to monitor for potential false-negative results. All samples were collected during 
evaluation for symptoms in a medical facility or within 36 h of participant admission 
to the hospital. Patient-reported duration of illness and other clinically relevant 
medical information were collected at the time of enrollment from the medical 
record and the participant or their legally authorized representative. Blood collected 
for plasma isolation was collected in BD vacutainers with EDTA. A subset of 80 
WU350 samples was selected for inclusion in mass spectrometry and proteomics 
analysis. The selection was based on obtaining a representative subset of individuals 
that had the same age and sex distribution as the full WU350 cohort with BMI < 33. 
Comorbidities other than obesity were not considered during sample selection 
to maintain the typical distribution of comorbidities expected in patients with 
COVID-19. The study was reviewed and approved by the Washington University in 
St. Louis Institutional Review Board (WU350 study approval no. 202003085). The 
study complied with the ethical standards of the Helsinki Declaration.

The Washington University in St. Louis Institutional Review Board reviewed 
and approved the ABF300 study for the collection of blood samples from healthy 
participants (IRB approval no. 201804084). Adults who were 25 years of age and 
older were recruited from the St. Louis area and provided written informed consent 
to participate. Participants were given a screening questionnaire to establish health 
status. Nonobese (BMI < 30), nonsmokers, without a history of cancer, chronic 
inflammatory conditions (arthritis, Crohn’s disease, colitis, dermatitis, fibromyalgia 
or lupus) or blood-borne infections were included. Participants who reported 
cold or flu symptoms in the previous month were excluded. Peripheral blood 
(approximately 100 ml) was collected in BD vacutainer tubes with sodium heparin 

Fig. 6 | Pathway enrichment analysis distinguishes COVID-19 from non-COVID-19 inflammation. Cohorts: A, n = 42; B, n = 27; C, n = 18; D, n = 29; 
E, n = 34; NCV, n = 27; CV_moderate, n = 18; CV_severe, n = 21; CV_deceased, n = 14. a, Volcano plot for GSEA for CV/NCV comparison. The top 20 
upregulated and downregulated pathways, grouped by function, are shown. Pathways differentially expressed with age are marked in red. P values and 
log fold change values were calculated using the limma package (two-sided test). Significant genes were selected after correction for multiple testing 
using the Benjamini–Hochberg method. b,d,f, GSEA for selected pathways upregulated with CV (Padj. < 0.05) and with age (P < 0.05), or for pathways 
upregulated in CV and age (b), in CV but not age (d) or downregulated with CV but not with age (f; Padj. < 0.05). P values are one-sided and adjusted 
for multiple testing using the Benjamini–Hochberg method (Padj.). NES are also shown. c,e,g, Box plots with the scaled expression of selected genes, 
upregulated in CV and age (c), in CV but not age (e) or downregulated with CV but not with age (g). Genes that were differentially expressed with age are 
marked with red. The lower and upper hinges of all box plots represent the 25th and 75th percentiles. Horizontal bars show the median value. Whiskers 
extend to the values that are no further than 1.5 times the IQR from either the upper or the lower hinge. ECM, extracellular matrix; ES, enrichment score.
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by venous puncture between 07:00 and 10:00 after an overnight fast. Plasma and 
PBMCs were isolated from this sample. An additional sample (approximately 
5 ml) was collected by a venous puncture in a BD vacutainer tube with EDTA for 
complete blood count with differentials. Samples from healthy participants were 
collected from 2018 to early 2019, eliminating the possibility of concurrent or 
prior SARS-CoV-2 infection. Participants were stratified into age groups of 10-year 

intervals for analysis and referred to as groups A (25–34 years), B (35–44 years), C 
(45–54 years), D (55–64 years) and E (65+ years).

Plasma and PBMC isolation from peripheral blood. A portion of the whole blood 
was centrifuged at 500g for 30 min at room temperature. The top plasma layer 
was carefully recovered and frozen on dry ice. Aliquots of plasma were stored at 
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−80 °C. The remaining whole blood was diluted in a 1:1 ratio with sterile DPBS 
(Sigma) with 2 mM EDTA (Cellgro). The diluted blood was overlaid on Histopaque 
1077 (Sigma) and centrifuged at 500g for 30 min at room temperature. The PBMC 
layer at the plasma–Histopaque interface was transferred to a new tube and washed 
twice with cold DBPS-EDTA. Aliquots of 1 × 106 cells were cryopreserved in 
CryoStor CS10 freezing medium (BioLife Solutions) and stored at −80 °C.

CyTOF, surface and intracellular staining. Metal-conjugated antibodies were 
purchased from Fluidigm when available. For all other targets, purified antibodies 
were obtained and conjugated using the appropriate Maxpar Antibody Labeling 
Kit (Fluidigm) according to the manufacturer’s protocol. The Maxpar metal-
conjugated antibodies were stored in PBS-based antibody stabilizing solution 
(Candor) supplemented with 0.09% sodium azide at 4 °C. Concentrations of all 
antibodies were determined by titration on PBMCs before use.

Cryopreserved PBMCs were thawed and washed in CyFACS buffer (PBS, 
0.1% BSA, 0.02% NaN3 and 2 mM EDTA) and incubated in human TruStain FcX 
blocking solution for 10 min at room temperature. The surface antibody cocktail 
was added to the cells for 1 h at 4 °C. The cells were washed with PBS and stained 
in 1 ml cisplatin (2.5 µM). Cisplatin staining was stopped by adding 3 ml CyFACS 
buffer.

Antibodies
CD19 142Nd (HIB19) 0.33× Fluidigm No. 3142001B
CD127 143Nd (A019D5) 1× Fluidigm No. 3143012B
CD69 144Nd (FN50) 1.5× Fluidigm No. 3144018B
CD4 145Nd (RPA-T4) 0.5× Fluidigm No. 3145001B
CD8 146Nd (RPA-T8) 0.33× Fluidigm No. 3146001B
CD11c 147Sm (Bu15) 1× Fluidigm No. 3147008B
CD34 148Nd (581) 1× Fluidigm No. 3148001B
CD45RO 149Sm (UCHL1) 1× Fluidigm No. 3149001B
CCR5 purified (J418F1) 7.5 µg ml−1 BioLegend No. 359102
HLA-DR 151Eu (G46-4) 0.33× Fluidigm No. 3151023B
EOMES 152Sm (WD1928) 0.33× Invitrogen No. 14-4877-82
SELL 153Eu (DREG-56) 0.1× Fluidigm No. 3153004B
CD45 154Sm (HI30) 0.1× Fluidigm No. 3154001B
CD45RA 155Gd (HI100) 0.1× Fluidigm No. 3155011B
PD-1 purified (EH12.2H7) 7.5 µg ml−1 BioLegend No. 329902
CD27 158Gd (L128) 0.1× Fluidigm No. 3158010B
TBET purified (4B10) 1.65 µg ml−1 BioLegend No. 644802
CD28 160Gd (CD28.2) 1× Fluidigm No. 3160003B
GZmK purified (GM26E7) 5 µg ml−1 BioLegend No. 370502
CD57 163Dy (HCD57) 0.1× Fluidigm No. 3163022B
CCR7 purified (G043H7) 5 µg ml−1 BioLegend No. 353202
CD16 165Ho (3G8) 1× Fluidigm No. 3165001B
TCRγδ purified (B1) 5 µg ml−1 BioLegend No. 331202
CD161 purified (HP-3G10) 1.65 µg ml−1 BioLegend No. 339902
GZmB purified (GB11) 0.2 µg ml−1 Abcam No. ab10912
CD25 169Tm (2A3) 1× Fluidigm No. 3169003B
CD3 170Er (UCHT1) 0.25× Fluidigm No. 3170001B
CD38 172Yb (HIT2) 1× Fluidigm No. 3172007B
TCRVa7.2 purified (3C10) 5 µg ml−1 BioLegend No. 351702
CD14 175Lu (M5E2) 1× Fluidigm No. 3175015B
CD56 176Yb (NCAM16.2) 0.1× Fluidigm No. 3176008B

CD11b 209Bi (ICRF44) 0.33× Fluidigm No. 3209003B

Plasma proteomic profiling by SomaScan 5k assay. Plasma from WU350 and 
ABF300 cohorts was submitted to SomaLogic for analysis on the 5k SomaScan 
platform (https://www.somalogic.com/wp-content/uploads/2016/08/SSM-002-
Rev-3-SOMAscan-Technical-White-Paper.pdf).

CyTOF data analysis. Samples were run on a CyTOF 1 mass cytometer. Data were 
exported into Cytobank (https://www.cytobank.org/), and individual samples 
were manually gated to exclude normalization beads, cell debris, dead cells and 
select singlet cells. Next, live CD45+ singlets were gated and exported for further 
downstream analyses with R. The samples were stained and run over 15 different 
days with one identical sample that was present in every run. To correct for a batch 
effect, we applied batch correction using the anchor sample and 95th percentile 

method60. Each batch-corrected file was subsampled with flowCore package 
to 20,000 events to reduce the amount of data in the aggregated dataset. After, 
the subsampled FCS files (excluding anchor samples) were imported in R with 
CATALYST package in catalyst object. All markers were arcsinh normalized with 
a cofactor of 5. Next, we excluded doublet cells based on coexpression of CD3/
CD11c/CD11b, CD3/CD19, CD56/HLA-DR, TCRγδ/CD11b, TBET/CD11b and 
CD45RA/CD45RO markers. Finally, each sample was subsampled further to 7,000 
events to both reduce the number of cells and accommodate the different number 
of cells resulting from doublet removal.

Clustering was performed with fast PhenoGraph (FastPG function from 
FastPG package61, run on R 3.6) using K = 140. Dimensionality reduction analysis 
was performed with umap function (uwot package62).

To define CD4+, CD8+ and other main populations, we visualized main 
markers and combined PhenoGraph-identified clusters that contained 
corresponding markers. To reanalyze CD4, CD8, NK and B cells separately, in 
each case we filtered cells from the population, and rerun UMAP and PhenoGraph 
on these cells using relevant markers. For CD4+ cells, we used CD127, CD25, 
CD45RA, CD45RO, EOMES, TBET AND SELL markers with K = 140 for 
PhenoGraph. For CD8+ cells, we used CCR5, CCR7, CD127, CD27, CD28, 
CD45RA, CD57, PD-1, HLA-DR, CD38, EOMES, TBET and GZMB markers 
with K = 50 for PhenoGraph. For B cells, we used CCR7, CD27, CD38, SELL and 
TBET with K = 140 for PhenoGraph. For NK cells, we used CD16, CD57, CD56, 
GZMK and SELL with K = 140 for PhenoGraph. PhenoGraph is known to generate 
many clusters, and cluster number increases with the number of cells analyzed63.
Thus, we combined some of the defined clusters to get clustering that is easier to 
interpret. To visualize the difference between samples, we used MDS on a matrix of 
samples and clusters, using cluster percentages in the matrix. MDS was calculated 
with the cmdscale function from the stats R package. Heat maps were created with 
ComplexHeatmap R package64. UMAPs and box plots were created with ggplot2 R 
package and adapted for publication in Adobe Illustrator.

SomaScan proteomic data analysis. For proteomic expression, we used files already 
standardized to the external reference. For analysis, expression values were log2 
normalized. Cohorts A–E (EDTA-treated plasma) and CV/NCV (heparin-treated 
plasma) were analyzed separately. Only proteins with unique gene names were 
considered for the analysis. To find proteins differentially expressed in cohorts A–E 
or CV/NCV, we used the R limma package65. GSEA and enrichment of protein 
signatures were performed with fgsea R package66. Volcano plots were performed 
with the ggplot2 package. To visualize the expression of selected genes across 
cohorts, expression was scaled (subtracting the mean and dividing by the standard 
deviation) to emphasize the difference in expression. Venn diagrams were created 
with the R eulerr package.

Tissue enrichment analysis with GTEx database. Data for gene expression analysis 
in different tissues were acquired from the open database GTEx. The GTEx Project 
was supported by the Common Fund of the Office of the Director of the National 
Institutes of Health (NIH), and by NCI, NHGRI, NHLBI, NIDA, NIMH and 
NINDS. The data used for the analyses described in this paper were obtained from 
the GTEx portal in January 2021. Data included RNA-seq performed with TruSeq 
library construction protocol (non-stranded, polyA+ selection) for 980 donors, 52 
tissue subtypes, 17,382 samples and 56,200 genes. To compare samples between 
each other, original GTEx-acquired read counts were converted to trimmed mean 
of M values, and then we calculated the median value for each gene for each 
tissue. To curate tissue-specific gene lists, for each gene, we calculated z-scores on 
median tissue values across all tissues, and tissues with values higher than three 
sigmas were accepted as specific for that gene. We mapped 52 resulting lists of 
tissue-subtype-specific genes on SomaScan, and lists were 4–640 genes long. We 
only used tissue-subtype-specific lists that had more than 15 genes. Downstream 
analysis was performed according to the GSEA described above.

Reanalysis of public data. The PBMC dataset was downloaded from the Gene 
Expression Omnibus database (GEO) under GSE107011 (ref. 67) with non-
normalized count values. We uploaded the dataset to Phantasus, where we filtered 
out genes with a mean expression of less than 3, resulting in less than 16,000 
genes. We normalized data using log + 1 and quantile normalization and used 
limma to perform a differential expression between neutrophils and all other 
groups (excluding PBMCs). We have taken 400 genes enriched in neutrophils as 
their signature to check for the enrichment in the CV/NCV comparison from 
SomaLogic data.

Liver cell atlas data58 (GSE124395) and aortic data59 (GSE155468) were 
downloaded from the GEO and processed with the Seurat package. We normalized 
data using the ‘LogNormalize’ method with a scale factor of 104, found variable 
genes with the FindVariableFeatures function, and scaled data with the ScaleData 
function. After, we run principle-component analysis, UMAP and clustering with 
the FindNeighbours function (using 20 PCA dimensions) and a resolution of 0.6.

Statistics and reproducibility. No statistical method was used to predetermine 
sample size. Seven CyTOF samples were excluded from the analysis based on the 
low number of live cells identified. The experiments were not randomized. The 
investigators were not blinded to allocation during experiments and outcome 
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assessment. One-way analysis of variance with post hoc Tukey’s test was used to 
compare means between multiple groups.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The raw and processed CyTOF data generated during this study are available at 
Synapse under accession code syn24239844. Further information and requests 
for resources and reagents should be directed to and will be fulfilled by the 
corresponding author.
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Extended Data Fig. 1 | Demographics and clinical characteristics for CV/NCV and healthy A-E cohorts, related to Fig. 1. Cohorts: A, n = 36; B, n = 21; C, 
n = 16; D, n = 24; E, n = 24. *p < 0.05, **p < 0.01, ***p < 0.001, ****p<0.0001, ns = not significant by one-way ANOVA with post-hoc Tuckey test. In E 
and F, the lower and upper hinges of all boxplots represent the 25th and 75th percentiles. Horizontal bars show the median value. Whiskers extend to the 
values that are no further than 1.5 × IQR from either the upper or the lower hinge. a, Scatterplot for CV and NCV patients. X-axis, age, Y-axis, BMI. Patients 
quantified by groups of younger/older than 60yo and with more/less BMI than 30. The color indicates sex. b, Scatterplot for CV and NCV patients. X-axis, 
age, Y-axis, BMI. Patients quantified by groups of younger/older than 60yo and with more/less BMI than 30. The color indicates the mortality status of the 
patient. c, Table of the demographics for CV/NCV cohorts. d, Table of the demographics for A-E cohorts. e, Distribution of clinical severity scores for ICU 
admitted patients. CV_Severe, n = 17; CV_Deceased, n = 11. f. Boxplot for C-reactive protein (CRP) value from clinical blood panel for CV patients cohort. 
CV_Moderate, n = 13; CV_Severe, n = 19; CV_Deceased, n = 9. g-i, Heatmaps, representing significance for pairwise comparisons of the means for WBC 
counts (G), red blood cell counts and characteristics (H), selected clinical values (I) between cohorts.

NATuRE AGING | www.nature.com/nataging

http://www.nature.com/nataging


ResouRceNATuRE AGING ResouRceNATuRE AGING

Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Biochemical characteristics of healthy aging, related to Fig. 1. In A, C, E and G, the lower and upper hinges of all boxplots represent 
the 25th and 75th percentiles. Horizontal bars show the median value. Whiskers extend to the values that are no further than 1.5 × IQR from either the 
upper or the lower hinge. *p < 0.05, **p < 0.01, ***p < 0.001, ****p<0.0001, ns = not significant by one-way ANOVA with post-hoc Tuckey test. a-b, 
Boxplots of clinical blood characteristics increasing with age. b, heatmaps representing significance for pairwise comparisons between A-E cohorts. c-b, 
Boxplots of clinical blood characteristics decreasing with age. d, heatmaps, representing significance for pairwise comparisons between A-E cohorts. e-f, 
Boxplots of clinical blood characteristics with increase/decrease or decrease/increase pattern with age. f, heatmaps representing significance for pairwise 
comparisons between A-E cohorts. g-h, Boxplots of clinical blood characteristics without a clear age-related change pattern. h, heatmaps representing 
significance for pairwise comparisons between A-E cohorts.
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Extended Data Fig. 3 | Profiling of PBMC with CyTOF across cohorts, related to Fig. 2. a, UMAP plot of all cell profiles with CyTOF, colored according to 
identified cell types. b, UMAP plots for all CyTOF markers. c, UMAP density plots characterizing the distribution of cells across conditions. d, Heatmaps, 
representing significance for pairwise comparisons of the cluster percentages between cohorts. *p < 0.05, **p < 0.01, ***p < 0.001, ****p<0.0001, ns = 
not significant by one-way ANOVA with post-hoc Tuckey test.
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Extended Data Fig. 4 | CyTOF markers and population dynamics for CD4 T cells, related to Fig. 2. a, CD4 T cells UMAP plots for all CyTOF markers. b, 
Heatmaps, representing significance for pairwise comparisons of the CD4 T cell cluster percentages between cohorts. *p < 0.05, **p < 0.01, ***p < 0.001, 
****p<0.0001, ns = not significant by one-way ANOVA with post-hoc Tuckey test.
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Extended Data Fig. 5 | CyTOF markers and population dynamics for CD8 T cells, related to Fig. 4. a, CD8 T cells UMAP plots for all CyTOF markers. b, 
Heatmaps, representing significance for pairwise comparisons of the CD8 T cell cluster percentages between cohorts. *p < 0.05, **p < 0.01, ***p < 0.001, 
****p<0.0001, ns = not significant by one-way ANOVA with post-hoc Tuckey test. c, Cell proportion for DR+CD38+ CD8 T cells cluster across cohorts 
split by sex. A, n = 38; B, n = 28; C, n = 20; D, n= 29; E, n = 33; NCV, non-COVID-19, n = 17; CV_Moderate, n = 18; CV_Severe, n = 18; CV_Deceased, n 
= 12. The lower and upper hinges of all boxplots represent the 25th and 75th percentiles. Horizontal bars show the median value. Whiskers extend to the 
values that are no further than 1.5 × IQR from either the upper or the lower hinge. d, Distribution of CD8 T cells between GZMK and CCR5 markers, one 
patient. e, Distribution of CD8 T cells between GZMK and CD57 markers, one patient.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | CyTOF markers and population dynamics for NK and B cells, related to Fig. 5. *p < 0.05, **p < 0.01, ***p < 0.001, ****p<0.0001, 
ns = not significant by one-way ANOVA with post-hoc Tuckey test. a, NK cells UMAP plots for all CyTOF markers. b, Heatmaps, representing significance 
for pairwise comparisons of the NK cluster percentages between cohorts. c, NK cells UMAP plot of CD56 expression, split by cohort. d, B cells UMAP 
plots for all CyTOF markers. e, Heatmaps, representing significance for pairwise comparisons of the B cell cluster percentages between cohorts.

NATuRE AGING | www.nature.com/nataging

http://www.nature.com/nataging


ResouRce NATuRE AGINGResouRce NATuRE AGING

Extended Data Fig. 7 | Inflammatory remodeling of myeloid cells a, UMAP plot of all myeloid cells, colored by the cluster. b, UMAP plots with the 
expression of selected markers. c, MDS projection for all samples, colored by cohort. For each sample, cluster percentages were used to do MDS. d, UMAP 
density plots characterizing the distribution of NK cells across conditions. e, Cell proportions of each NK cell cluster across cohorts. The lower and upper 
hinges of all boxplots represent the 25th and 75th percentiles. Horizontal bars show the median value. Whiskers extend to the values that are no further 
than 1.5 × IQR from either the upper or the lower hinge. A, n = 38; B, n = 28; C, n = 20; D, n= 29; E, n = 33; NCV, non-COVID-19, n = 17; CV_Moderate, n 
= 18; CV_Severe, n = 18; CV_Deceased, n = 12. f, Heatmaps representing significance for pairwise comparisons of the B cell cluster percentages between 
cohorts. *p < 0.05, **p < 0.01, ***p < 0.001, ****p<0.0001, ns = not significant by one-way ANOVA with post-hoc Tuckey test. G. UMAP plots for all 
CyTOF markers.
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Extended Data Fig. 8 | See next page for caption.

NATuRE AGING | www.nature.com/nataging

http://www.nature.com/nataging


ResouRce NATuRE AGINGResouRce NATuRE AGING

Extended Data Fig. 8 | SomaLogic protein plasma analysis of age- and inflammation-related features, related to Fig. 6. Cohorts: A, n = 42; B, n = 27; 
C, n = 18; D, n= 29; E, n = 34; NCV, non-COVID-19, n = 27; CV_Moderate, n = 18; CV_Severe, n = 21; CV_Deceased, n = 14. In A-C, E, G and H, the 
lower and upper hinges of all boxplots represent the 25th and 75th percentiles. Horizontal bars show the median value. Whiskers extend to the values 
that are no further than 1.5 × IQR from either the upper or the lower hinge. D and G, P values were calculated using the limma package (two-sided test). 
Significant genes were selected after correction for multiple testing using the Benjamini–Hochberg method. a, Boxplots of average expression per sample 
up- and downregulated in CV Moderate cohort (A), CV Severe cohort (B), CV Deceased cohort (C), compared to NCV cohort, across CV/NCV cohorts. 
d, Heatmap with the number of differentially expressed genes (p.adj < 0.05) between CV/NCV cohorts. e, Boxplots of z-score expression of proteins 
significantly up- or downregulated with age, across A-E cohorts. f, Selected correlations between protein expression and clinical blood values for healthy 
A-E cohorts. g, Overlap between proteins downregulated with age (E vs. A comparison) versus proteins upregulated in COVID-19-related inflammation 
(CV vs. NCV comparison). Boxplots with scaled protein expression across A-E and NCV-CV cohorts. h, Overlap between proteins upregulated with 
age (E vs. A comparison) versus proteins downregulated in COVID-19-related inflammation (CV vs. NCV comparison). Boxplots with scaled protein 
expression across A-E and NCV-CV cohorts. i, Heatmap with the number of differentially expressed genes (p.adj < 0.05) between A-E cohorts. j, Gene set 
enrichment of neutrophil+monocyte signature, acquired from GSE107011 dataset, in proteins ranked according to differential expression between CV/NCV 
cohorts.
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