Interleukin-11: A Multifunctional Cytokine with Intrinsically Disordered Regions

Abstract

Cytokine interleukin-11 (IL-11) is a multifunctional protein with diverse roles in the normal cell signaling and in various pathologies. The structure of IL-11 is characterized by a four-helix bundle motif comprising two pairs of antiparallel α-helices arranged in an up–up–down–down configuration. Evaluation of the intrinsic disorder predisposition of human IL-11 by several computational tools clearly shows that this protein is predicted to have functional disordered regions potentially involved in interaction with natural binding partners. Signaling by IL-11 proceeds via an interaction of the protein with its membrane-specific receptor IL-11Rα and a subsequent interaction of the complex with the transmembrane signal-transducing receptor GP130. Cytoplasmic domain of IL-11Rα is predicted to be very disordered, and noticeable amount of disorder is present even in the large extracellular domain of the protein. GP130 is also predicted to have long disordered region that is located at the C-terminal of the protein and is expected to have several disorder-based binding sites. It shows that intrinsic disorder might play an important role in functioning of this signaling machine. A specific subset of the calcium sensor proteins (calmodulin, S100P, S100B, NCS-1, GCAP-1/2) exhibits metal-dependent binding of IL-11 with dissociation constants in a range of 1–19 μM, and the structural features of their hinge regions likely ensure selectivity and calcium sensitivity of IL-11 binding to the EF-hand proteins studied. IL-11 exhibits multiple effects on hematopoietic and non-hematopoietic systems. It plays a major role in orchestrating complex processes of tumor development and progression.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Zhang, J. M., & An, J. (2007). Cytokines, inflammation and pain. International Anesthesiology Clinics, 45(2), 27–37.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Taga, T., & Kishimoto, T. (1997). GP130 and the interleukin-6 family of cytokines. Annual Review of Immunology, 15, 797–819.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Putoczki, T. L., Thiem, S., Loving, A., Busuttil, R. A., Wilson, N. J., Ziegler, P. K., et al. (2013). Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell, 24, 257–271.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Putoczki, T. L., Dobson, R. C. J., & Griffin, M. D. W. (2014). The structure of human interleukin-11 reveals receptor-binding site features and structural differences from interleukin-6. Acta Crystallographica, D70, 2277–2285.

    Google Scholar 

  5. 5.

    Habchi, J., Tompa, P., Longhi, S., & Uversky, V. N. (2014). Introducing protein intrinsic disorder. Chemical Reviews, 114(13), 6561–6588.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Obradovic, Z., Peng, K., Vucetic, S., Radivojac, P., & Dunker, A. K. (2005). Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins, 61(Suppl 7), 176–182.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Obradovic, Z., Peng, K., Vucetic, S., Radivojac, P., Brown, C. J., & Dunker, A. K. (2003). Predicting intrinsic disorder from amino acid sequence. Proteins, 53(Suppl 6), 566–572.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Dunker, A. K., Lawson, J. D., Brown, C. J., Williams, R. M., Romero, P., Oh, J. S., & Obradovic, Z. (2001). Intrinsically disordered protein. Journal of Molecular Graphics and Modelling, 19(1), 26–59.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Xue, B., Dunbrack, R. L., Williams, R. W., Dunker, A. K., & Uversky, V. N. (2010). PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochimica et Biophysica Acta, 1804(4), 996–1010.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Dosztanyi, Z., Meszaros, B., & Simon, I. (2009). ANCHOR: Web server for predicting protein binding regions in disordered proteins. Bioinformatics, 25(20), 2745–2746.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Meszaros, B., Simon, I., & Dosztanyi, Z. (2009). Prediction of protein binding regions in disordered proteins. PLoS Computational Biology, 5(5), e1000376. doi:10.1371/journal.pcbi.1000376.

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Dosztanyi, Z., Csizmok, V., Tompa, P., & Simon, I. (2005). IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics, 2(16), 3433–3434.

    Article  Google Scholar 

  13. 13.

    Dosztanyi, Z., Csizmok, V., Tompa, P., & Simon, I. (2005). The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. Journal of Molecular Biology, 347(4), 827–839.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P., & von Mering, C. (2011). The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Research, 39(Database), D561–D568.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Kenley, R. A., & Warne, N. W. (1994). Acid-catalyzed peptide bond hydrolysis of recombinant human interleukin 11. Pharmaceutical Research, 11, 72–76.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Piszkiewicz, D., Landon, M., & Smith, E. L. (1970). Anomalous cleavage of aspartyl-proline peptide bonds during amino acid sequence determinations. Biochemical and Biophysical Research Communications, 40, 1173–1178.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Matadeen, R., Hon, W. C., Heath, J. K., Jones, E. Y., & Fuller, S. (2007). The dynamics of signal triggering in a GP130–receptor complex. Structure, 15, 441–448.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Boulanger, M. J., Chow, D. C., Brevnova, E. E., & Garcia, K. C. (2003). Hexameric structure and assembly of the interleukin-6/IL-6 alpha-receptor/GP130 complex. Science, 300, 2101–2104.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Barton, V. A., Hall, M. A., Hudson, K. R., & Heath, J. K. (2000). Interleukin-11 signals through the formation of a hexameric receptor complex. Journal of Biological Chemistry, 275, 36197–36203.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Hilton, D. J., Hilton, A. A., Raicevic, A., Rakar, S., Harrison-Smith, M., Gough, N. M., et al. (1994). Cloning of a murine IL-11 receptor alpha-chain: Requirement for GP130 for high affinity binding and signal transduction. EMBO Journal, 13, 4765–4775.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Nitz, R., Lokau, J., Aparicio-Siegmund, S., Scheller, J., & Garbers, C. (2015). Modular organization of Interleukin-6 and Interleukin-11 α-receptors. Biochimie, 119, 175–182.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Cherel, M., Sorel, M., Lebeau, B., Dubois, S., Moreau, J. F., Bataille, R., et al. (1995). Molecular cloning of two isoforms of a receptor for the human hematopoietic cytokine interleukin-11. Blood, 86, 2534–2540.

    CAS  PubMed  Google Scholar 

  23. 23.

    Lebeau, B., Montero-Julian, F. A., Wijdenes, J., Muller-Newen, G., Dahmen, H., Cherel, M., et al. (1997). Reconstitution of two isoforms of the human interleukin-11 receptor and comparison of their functional properties. FEBS Letters, 407, 141–147.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Karow, J., Hudson, K. R., Hall, M. A., Vernallis, A. B., Taylor, J. A., Gossler, A., & Heath, J. K. (1996). Mediation of interleukin-11-dependent biological responses by a soluble form of the interleukin-11 receptor. Biochemical Journal, 318, 489–495.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Lokau, J., Nitz, R., Agthe, M., Monhasery, N., Aparicio-Siegmund, S., Schumacher, N., et al. (2016). Proteolytic cleavage governs interleukin-11 trans-signaling. Cell Reports, 14(7), 1761–1773.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Nguyen, P. M., Putoczki, T. L., & Ernst, M. (2015). STAT3-activating cytokines: A therapeutic opportunity for inflammatory bowel disease? Journal of Interferon and Cytokine Research, 35(5), 340–350.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Harmegnies, D., Wang, X. M., Vandenbussche, P., Leon, A., Vusio, P., Grötzinger, J., et al. (2006). Randomized, double blind controlled trial of subcutaneous recombinant human interleukin-11 versus prednisolone in active Crohn’s disease. American Journal of Gastroenterology, 101, 793–797.

    Article  Google Scholar 

  28. 28.

    Barton, V. A., Hudson, K. R., & Heath, J. K. (1999). Identification of three distinct receptor binding sites of murine interleukin-11. Journal of Biological Chemistry, 274, 5755–5761.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Underhill-Day, N., McGovern, L. A., Karpovich, N., Mardon, H. J., Barton, V. A., & Heath, J. K. (2003). Functional characterization of W147A: A high-affinity interleukin-11 antagonist. Endocrinology, 144, 3406–3414.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Lee, C. G., Hartl, D., Matsuura, H., Dunlop, F. M., Scotney, P. D., Fabri, L. J., et al. (2008). Endogenous IL-11 signaling is essential in Th2- and IL-13-induced inflammation and mucus production. American Journal of Respiratory Cell and Molecular Biology, 39, 739–746.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Somers, W., Stahl, M., & Seehra, J. S. (1997). 1.9 Å crystal structure of interleukin 6: implications for a novel mode of receptor dimerization and signaling. EMBO Journal, 16, 989–997.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Shatsky, M., Nussinov, R., & Wolfson, H. J. (2004). A method for simultaneous alignment of multiple protein structures. Proteins: Structure, Function, and Bioinformatics, 56(1), 143–156.

    CAS  Article  Google Scholar 

  33. 33.

    Krissinel, E., & Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. Journal of Molecular Biology, 372, 774–797.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Gu, Z. J., Wijdenes, J., Zhang, X. G., Hallet, M. M., Clement, C., & Klein, B. (1996). Anti-GP130 transducer monoclonal antibodies specifically inhibiting ciliary neurotrophic factor, interleukin-6, interleukin-11, leukemia inhibitory factor or oncostatin M. Journal of Immunological Methods, 190, 21–27.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Dahmen, H., Horsten, U., Küster, A., Jacques, Y., Minvielle, S., Kerr, I. M., et al. (1998). Activation of the signal transducer GP130 by interleukin-11 and interleukin-6 is mediated by similar molecular interactions. Biochemical Journal, 331, 695–702.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Kurth, I., Horsten, U., Pflanz, S., Dahmen, H., Küster, A., Grötzinger, J., et al. (1999). Activation of the signal transducer glycoprotein 130 by both IL-6 and IL-11 requires two distinct binding epitopes. Journal of Immunology, 162, 1480–1487.

    CAS  Google Scholar 

  37. 37.

    Bhattacharya, S., Bunick, C. G., & Chazin, W. J. (2004). Target selectivity in EF-hand calcium binding proteins. Biochimica et Biophysica Acta, 1742, 69–79.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Zimmer, D. B., Sadosky, P. W., & Weber, D. J. (2003). Molecular mechanisms of S100-target protein interactions. Microscopy Research and Technique, 60, 552–559.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Cai, X. Y., Lu, L., Wang, Y. N., Jin, C., Zhang, R. Y., Zhang, Q., et al. (2011). Association of increased S100B, S100A6 and S100P in serum levels with acute coronary syndrome and also with the severity of myocardial infarction in cardiac tissue of rat models with ischemia-reperfusion injury. Atherosclerosis, 217, 536–542.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Wu, Z., Boonmars, T., Nagano, I., Boonjaraspinyo, S., Srinontong, P., Ratasuwan, P., et al. (2016). Significance of S100P as a biomarker in diagnosis, prognosis and therapy of opisthorchiasis-associated cholangiocarcinoma. International Journal of Cancer, 138(2), 396–408.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Becker, T., Gerke, V., Kube, K., & Weber, K. (1992). S100P, a novel Ca2+-binding protein from human placenta—cDNA cloning, recombinant protein expression and Ca2+ binding-properties. European Journal of Biochemistry, 207, 541–547.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Lee, Y. C., Volk, D. E., Thiviyanathan, V., Kleerekoper, Q., Gribenko, A. V., Zhang, S. M., et al. (2004). Letter to the editor: NMR structure of the Apo-S100P protein. Journal of Biomolecular NMR, 29, 399–402.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Tothova, V., & Gibadulinova, A. (2013). S100P, a peculiar member of S100 family of calcium-binding proteins implicated in cancer. Acta Virologica, 57, 238–246.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Arumugam, T., & Logsdon, C. D. (2011). S100P: a novel therapeutic target for cancer. Amino Acids, 41(4), 893–899.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Kazakov, A. S., Sokolov, A. S., Rastrygina, V. A., Solovyev, V. V., Ismailov, R. G., Mikhailov, R. V., et al. (2015). High-affinity interaction between interleukin-11 and S100P protein. Biochemical and Biophysical Research Communications, 468(4), 733–738.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Kazakov, A. S., Sokolov, A. S., Vologzhannikova, A. A., Permyakova, M. E., Khorn, P. A., Ismailov, R. G., et al. (2016). Interleukin-11 binds specific EF-hand proteins via their conserved structural motif. Journal of Biomolecular Structure and Dynamics. doi:10.1080/07391102.2015.1132392.

    PubMed  Google Scholar 

  47. 47.

    Denessiouk, K., Permyakov, S., Denesyuk, A., Permyakov, E., & Johnson, M. S. (2014). Two structural motifs within canonical EF-hand calcium binding domains identify five different classes of calcium buffers and sensors. PLoS One, 9(10), e109287.

    PubMed Central  Article  PubMed  Google Scholar 

  48. 48.

    Garbers, C., & Scheller, J. (2013). Interleukin-6 and interleukin-11: Same but different. Biological Chemistry, 394(9), 1145–1161.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Permyakov, S. E., Ismailov, R. G., Xue, B., Denesyuk, A. I., Uversky, V. N., & Permyakov, E. A. (2011). Intrinsic disorder in S100 proteins. Molecular BioSystems, 7, 2164–2180.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Permyakov, E. A., & Kretsinger, R. H. (2011). Calcium binding proteins. Hoboken: Wiley.

    Google Scholar 

  51. 51.

    Ames, J. B., & Lim, S. (2012). Molecular structure and target recognition of neuronal calcium sensor proteins. Biochimica et Biophysica Acta, 1820(8), 1205–1213.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Lim, S., Dizhoor, A. M., & Ames, J. B. (2014). Structural diversity of neuronal calcium sensor proteins and insights for activation of retinal guanylyl cyclase by GCAP1. Frontiers in Molecular Neuroscience, 7, 19. doi:10.3389/fnmol.2014.00019.

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Esteras, N., Alquezar, C., de la Encarnacion, A., Villarejo, A., Bermejo-Pareja, F., & Martin-Requero, A. (2013). Calmodulin levels in blood cells as a potential biomarker of Alzheimer’s disease. Alzheimers Research and Therapy, 5(6), 55. doi:10.1186/alzrt219.

    Article  Google Scholar 

  54. 54.

    Ren, C. L., Chen, Y., Han, C. X., Fu, D. Y., & Chen, H. (2014). Plasma interleukin-11 (IL-11) levels have diagnostic and prognostic roles in patients with pancreatic cancer. Tumor Biology, 35(11), 11467–11472.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Donato, R. (1986). S-100 proteins. Cell Calcium, 7(3), 123–145.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Kakiuchi, S., Yasuda, S., Yamazaki, R., Teshima, Y., Kanda, K., Kakiuchi, R., & Sobue, K. (1982). Quantitative-determinations of calmodulin in the supernatant and particulate fractions of mammalian-tissues. Journal of Biochemistry, 92(4), 1041–1048.

    CAS  PubMed  Google Scholar 

  57. 57.

    Schaad, N. C., DeCastro, E., Nef, S., Hegi, S., Hinrichsen, R., Martone, M. E., & Nef, P. (1996). Direct modulation of calmodulin targets by the neuronal calcium sensor NCS-1. Proceedings of the National Academy of Sciences of the United States of America, 93(17), 9253–9258.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Hwang, J. Y., Lange, C., Helten, A., Hoppner-Heitmann, D., Duda, T., Sharma, R. K., & Koch, K. W. (2003). Regulatory modes of rod outer segment membrane guanylate cyclase differ in catalytic efficiency and Ca2+-sensitivity. European Journal of Biochemistry, 270(18), 3814–3821.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Proskuryakov, S. Y., Konoplyannikov, A. G., & Gabai, V. L. (2003). Necrosis: A specific form of programmed cell death? Experimental Cell Research, 283(1), 1–16.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Wu, X., & Bers, D. M. (2007). Free and bound intracellular calmodulin measurements in cardiac myocytes. Cell Calcium, 41(4), 353–364.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Nakamura, T. Y., Sturm, E., Pountney, D. J., Orenzoff, B., Artman, M., & Coetzee, W. A. (2003). Developmental expression of NCS-1 (frequenin), a regulator of Kv4 K+ channels, in mouse heart. Pediatric Research, 53(4), 554–557.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Sorci, G., Bianchi, R., Riuzzi, F., Tubaro, C., Arcuri, C., Giambanco, I., & Donato, R. (2010). S100B protein, a damage-associated molecular pattern protein in the brain and heart, and beyond. Cardiovascular Psychiatry and Neurology. doi:10.1155/2010/656481.

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Kajstura, J., Cheng, W., Reiss, K., Clark, W. A., Sonnenblick, E. H., Krajewski, S., & Anversa, P. (1996). Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Laboratory Investigation, 74(1), 86–107.

    CAS  PubMed  Google Scholar 

  64. 64.

    Saenger, A. K., & Christenson, R. H. (2010). Stroke biomarkers: Progress and challenges for diagnosis, prognosis, differentiation, and treatment. Clinical Chemistry, 56(1), 21–33.

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Zernii, E. Y., Nazipova, A. A., Gancharova, O. S., Kazakov, A. S., Serebryakova, M. V., Zinchenko, D. V., et al. (2015). Light-induced disulfide dimerization of recoverin under ex vivo and in vivo conditions. Free Radical Biology and Medicine, 83, 283–295.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Nagineni, C. N., Kommineni, V. K., William, A., Hooks, J. J., & Detrick, B. (2010). IL-11 expression in retinal and corneal cells is regulated by interferon-γ. Biochemical and Biophysical Research Communications, 391(1), 287–292.

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Papotto, P. H., Marengo, E. B., Sardinha, L. R., Goldberg, A. C., & Rizzo, L. V. (2014). Immunotherapeutic strategies in autoimmune uveitis. Autoimmunity Reviews, 13(9), 909–916.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Schwertschlag, U. S., Trepicchio, W. L., Dykstra, K. H., Keith, J. C., Turner, K. J., & Dorner, A. J. (1999). Hematopoietic, immunomodulatory and epithelial effects of interleukin-11. Leukemia, 13, 1307–1315.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Du, X., & Williams, D. A. (1997). Interleukin-11: Review of molecular, cell biology, and clinical use. Blood, 89, 3897–3908.

    CAS  PubMed  Google Scholar 

  70. 70.

    Putoczki, T. L., & Ernst, M. (2010). More than a sidekick: The IL-6 family cytokine IL-11 links inflammation to cancer. Journal of Leukocyte Biology, 88, 1109–1117.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Paul, S. R., Bennett, F., Calvetti, J. A., Kelleher, K., Wood, C. R., O’Hara, R. M. J., et al. (1990). Molecular cloning of a cDNA encoding interleukin 11 a stromal cell-derived lymphopoietic and hematopoietic cytokine. Proceedings of the National Academy of Sciences of the United States of America, 87, 7512–7516.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Wan, B., Zhang, H., Fu, H., Chen, Y., Yang, L., Yin, J., et al. (2015). Recombinant human interleukin-11 (IL-11) is a protective factor in severe sepsis with thrombocytopenia: A case-control study. Cytokine, 76(2), 138–143.

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Sands, B. E., Winston, B. D., Salzberg, B., Safdi, M., Barish, C., Wruble, L., et al. (2002). Alimentary. Pharmacology and Therapeutics, 16, 399–406.

    CAS  Google Scholar 

  74. 74.

    Jung, Y., Ahn, H., Kim, D. S., Hwang, Y. R., Ho, S. H., Kim, J. M., et al. (2011). Improvement of biological and pharmacokinetic features of human interleukin-11 by site-directed mutagenesis. Biochemical and Biophysical Research Communications, 405, 399–404.

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Robb, L., Li, R., Hartley, L., Nandurkar, H. H., Koentgen, F., & Begley, C. G. (1998). Infertility in female mice lacking the receptor for interleukin 11 is due to a defective uterine response to implantation. Nature Medicine, 4, 303–308.

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Anguita, J., Barthold, S. W., Samanta, S., Ryan, J., & Fikrig, E. (1999). Selective anti-inflammatory action of interleukin-11 in murine Lyme disease: Arthritis decreases while carditis persists. Journal of Infectious Diseases, 179, 734–737.

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Walmsley, M., Butler, D. M., Marinova-Mutafchieva, L., & Feldmann, M. (1998). An anti-inflammatory role for interleukin-11 in established murine collagen-induced arthritis. Immunology, 95, 31–37.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Trontzas, P., Kamper, E. F., Potamianou, A., Kyriazis, N. C., Kritikos, H., & Stavridis, J. (1998). Comparative study of serum and synovial fluid interleukin-11 levels in patients with various arthritides. Clinical Biochemistry, 31, 673–679.

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Bozza, M., Bliss, J. L., Maylor, R., Erickson, J., Donnelly, L., Bouchard, P., et al. (1999). Interleukin-11 reduces T-cell-dependent experimental liver injury in mice. Hepatology, 30, 1441–1447.

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Sands, B. E., Bank, S., Sninsky, C. A., Robinson, M., Katz, S., Singleton, J. W., et al. (1999). Preliminary evaluation of safety and activity of recombinant human interleukin 11 in patients with active Crohn’s disease. Gastroenterology, 117, 58–64.

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Peterson, R., Wang, L., Albert, L., Keith, J. C., & Dorner, A. J. (1998). Molecular effects of recombinant human interleukin-11 in the HLA-B27 rat model of inflammatory bowel disease. Laboratory Investigation, 78, 1503–1512.

    CAS  PubMed  Google Scholar 

  82. 82.

    Greenwood-Van Meerveld, B., Tyler, K., & Keith, J. C. (2000). Recombinant human interleukin-11 modulates ion transport and mucosal inflammation in the small intestine and colon. Laboratory Investigation, 80, 1269–1280.

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Sonis, S. T., Van Vugt, A. G., McDonald, J., Dotoli, E., Schwertschlag, U., Szklut, P., & Keith, J. (1997). Mitigating effects of interleukin 11 on consecutive courses of 5-fluorouracil-induced ulcerative mucositis in hamsters. Cytokine, 9, 605–612.

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    Trepicchio, W. L., Ozawa, M., Walters, I. B., Kikuchi, T., Gilleaudeau, P., Bliss, J. L., et al. (1999). Interleukin-11 therapy selectively down-regulates type I cytokine pro-inflammatory pathways in psoriasis lesions. Journal of Clinical Investigation, 104, 1527–1537.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Dimitriadis, E., & Menkhorst, E. (2011). New generation contraceptives: interleukin 11 family cytokines as non-steroidal contraceptive targets. Journal of Reproductive Immunology, 88(2), 233–239.

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Winship, A. L., Koga, K., Menkhorst, E., Van Sinderen, M., Rainczuk, K., Nagai, M., et al. (2015). Interleukin-11 alters placentation and causes preeclampsia features in mice. Proceedings of the National Academy of Sciences of the United States of America, 112(52), 15928–15933.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Kimura, R., Maeda, M., Arita, A., Oshima, Y., Obana, M., Ito, T., et al. (2007). Identification of cardiac myocytes as targets of interleukin-11, a cardioprotective cytokine. Cytokine, 38, 107–115.

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Obana, M., Maeda, M., Takeda, K., Hayama, A., Mohri, T., Yamashita, T., et al. (2010). Therapeutic activation of STAT3 by interleukin-11 ameliorates cardiac fibrosis after myocardial infarction. Circulation, 121, 684–691.

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Obana, M., Miyamoto, K., Murasawa, S., Iwakura, T., Hayama, A., Yamashita, T., et al. (2012). Therapeutic administration of IL-11 exhibits the postconditioning effects against ischemia-reperfusion injury via STAT3 in the heart. American Journal of Physiology Heart and Circulatory Physiology, 303, H569–H577.

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Takeda, K., Matsumiya, G., Miyagawa, S., Maeda, M., Fujio, Y., & Sawa, Y. (2009). Interleukin-11 attenuates infarct size and improves ventricular function in a canine heart model of ischemia/reperfusion injury. Circulation, 120, S737.

    Google Scholar 

  91. 91.

    Ernst, M., & Putoczki, T. L. (2014). Molecular pathways: IL11 as a tumor promoting cytokine-translational implications for cancers. Clinical Cancer Research, 20(22), 5579–5588.

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Ernst, M., & Putoczki, T. L. (2013). Targeting IL-11 signaling in colon cancer. Oncotarget, 4, 1860–1861.

    PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Pan, D., Xu, L., Liu, H., Zhang, W., Liu, W., Liu, Y., et al. (2015). High expression of interleukin-11 is an independent indicator of poor prognosis in clear-cell renal cell carcinoma. Cancer Science, 106, 592–597.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Winship, A. L., Van Sinderen, M., Donoghue, J., Rainczuk, K., & Dimitriadis, E. (2016). Targeting interleukin-11 receptor-α impairs human endometrial cancer cell proliferation and invasion in vitro and reduces tumor growth and metastasis in vivo. Molecular Cancer Therapeutics, 15(4), 720–730.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant to E. A. P. from the Ministry of Education and Science of the Russian Federation (No. 14.607.21.0097, RFMEFI60714X0097).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eugene A. Permyakov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Permyakov, E.A., Uversky, V.N. & Permyakov, S.E. Interleukin-11: A Multifunctional Cytokine with Intrinsically Disordered Regions. Cell Biochem Biophys 74, 285–296 (2016). https://doi.org/10.1007/s12013-016-0752-7

Download citation

Keywords

  • Interleukin
  • Cytokines
  • Intrinsically disordered proteins
  • Calcium-binding proteins
  • Interleukin receptors
  • Hematopoietic system
  • Tumor development