Drug-Related Carcinogenesis: Risk Factors and Approaches for Its Prevention

Abstract

The review summarizes the data on the role of metabolic and repair systems in the mechanisms of therapy-related carcinogenesis and the effect of their polymorphism on the cancer development risk. The carcinogenic activity of different types of drugs, from the anticancer agents to analgesics, antipyretics, immunomodulators, hormones, natural remedies, and non-cancer drugs, is described. Possible approaches for the prevention of drug-related cancer induction at the initiation and promotion stages are discussed.

This is a preview of subscription content, access via your institution.

Abbreviations

ABVD:

adriamycin + bleomycin + vinblastine + dacarbazine

5AR:

5-α-reductase

As3MT:

arsenic methyl-transferase

CES1(2):

carboxylesterase 1(2)

CMF:

cyclophos-phamide + methotrexate + 5-fluorouracil

CYP:

cytochrome P450

DES:

diethylstilbestrol

DMBA:

7,12-dimethyl-benz(a)anthracene

EGCG:

epigallocatechin-3-gallate

GSTP1(T1):

glutathione S transferase P1(T1)

HR:

homologous recombination

IARC:

International Agency for Research on Cancer

MAPK:

mitogen-activated protein kinase

5mC:

5-methylcytosine

miR:

microRNA

MMR:

DNA mismatch repair system

MOPP:

mechlorethamine + vincristine + pro-carbazine + prednisone

NQO1:

NAD(P)H:quinone oxidore-ductase 1

8-OHdG:

8-hydroxy-2′-deoxyguanosine

PI3K:

phosphoinositide 3-kinase

R-CHOP:

cyclophosphamide + doxorubicin + vincristine + prednisone

R-CHVP:

cyclophos-phamide + doxorubicin + etoposide + prednisone

R-CVP:

cyclophosphamide + vincristine + prednisone

R-FCM:

flu-darabine + cyclophosphamide + mitoxantrone

R-MCP:

mitoxantrone + chlorambucil + prednisone

SULT:

sulfotrans-ferase

TNF-α:

tumor necrosis factor-α

UGT:

UDP-glu-curonyl transferase

VMF:

vincristine + methotrexate + 5-fluo-rouracil

References

  1. 1.

    Jones, P. A., and Baylin, S. B. (2007) The epigenomics of cancer, Cell, 128, 683–692.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Tariq, K., and Ghias, K. (2016) Colorectal cancer carcino-genesis: a review of mechanisms, Cancer Biol. Med., 13, 120–135.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Kanwal, R., Gupta, K., and Gupta, S. (2015) Cancer epi-genetics: an introduction, Methods Mol. Biol., 1238, 3–25.

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Agrawal, K., Das, V., Vyas, P., and Hajduch, M. (2018) Nucleosidic DNA demethylating epigenetic drugs - a comprehensive review from discovery to clinic, Pharmacol. Ther., 188, 45–79.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Utley, R. T., Lacoste, N., Jobin-Robitaille, O., Allard, S., and Cote, J. (2005) Regulation of NuA4 histone acetyl-transferase activity in transcription and DNA repair by phosphorylation of histone H4, Mol. Cell. Biol., 25, 8179–8190.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Lee, K. K., and Workman, J. L. (2007) Histone acetyl-transferase complexes: one size doesn’t fit all, Nat. Rev. Mol. Cell Biol., 8, 284–295.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Sundar, I. K., and Rahman, I. (2016) Gene expression profiling of epigenetic chromatin modification enzymes and histone marks by cigarette smoke: implications for COPD and lung cancer, Am. J. Physiol. Lung Cell. Mol. Physiol., 311, L1245–L1258.

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Koschmann, C., Nunez, F. J., Mendez, F., Brosnan-Cashman, J. A., Meeker, A. K., Lowenstein, P. R., and Castro, M. G. (2017) Mutated chromatin regulatory factors as tumor drivers in cancer, Cancer Res., 77, 227–233.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Calin, G. A., and Croce, C. M. (2006) MicroRNA signatures in human cancers, Nat. Rev. Cancer, 6, 857–866.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Iorio, M. V., and Croce, C. M. (2012) MicroRNA dysregu-lation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review, EMBO Mol. Med., 4, 143–159.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Detassis, S., Grasso, M., Del Vescovo, V., and Denti, M. A. (2017) MicroRNAs make the call in cancer personalized medicine, Front. Cell Dev. Biol., 5, 86.

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Chappell, G., Pogribny, I. P., Guyton, K. Z., and Rusyn, I. (2016) Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: a systematic literature review, Mutat. Res. Rev. Mutat. Res., 768, 27–45.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Park, Y. J., Claus, R., Weichenhan, D., and Plass, C. (2011) Genome-wide epigenetic modifications in cancer, Prog. Drug Res., 67, 25–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    McCulloch, D., Brown, C., and Iland, H. (2017) Retinoic acid and arsenic trioxide in the treatment of acute promye-locytic leukemia: current perspectives, Onco Targets Ther., 10, 1585–1601.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Sarkar, A., and Paul, B. (2016) The global menace of arsenic and its conventional remediation - a critical review, Chemosphere, 158, 37–49.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Smith, A. H., Marshall, G., Roh, T., Ferreccio, C., Liaw, J., and Steinmaus, C. (2018) Lung, bladder, kidney cancer mortality 40 years after arsenic exposure reduction, J. Natl. Cancer Inst., 110, 241–249.

    PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Saint-Jacques, N., Brown, P., Nauta, L., Boxall, J., Parker, L., and Dummer, T. J. B. (2018) Estimating the risk of bladder and kidney cancer from exposure to low-levels of arsenic in drinking water, Nova Scotia, Canada, Environ. Int., 110, 95–104.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Gamboa-Loira, B., Cebrian, M. E., Franco-Marina, F., and Lopez-Carrillo, L. (2017) Arsenic metabolism and cancer risk: a meta-analysis, Environ. Res., 156, 551–558.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Sage, A. P., Minatel, B. C., Ng, K. W., Stewart, G. L., Dummer, T. J. B., Lam, W. L., and Martinez, V. D. (2017) Oncogenomic disruptions in arsenic-induced carcinogene-sis, Oncotarget, 8, 25736–25755.

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Engstrom, K. S., Vahter, M., Fletcher, T., Leonardi, G., Goessler, W., Gurzau, E., Koppova, K., Rudnai, P., Kumar, R., and Broberg, K. (2015) Genetic variation in arsenic (+3 oxidation state) methyltransferase (AS3MT), arsenic metabolism and risk of basal cell carcinoma in a European population, Environ. Mol. Mutagen., 56, 60–69.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  21. 21.

    Antonelli, R., Shao, K., Thomas, D. J., Sams, R., 2nd, and Cowden, J. (2014) AS3MT, GSTO, and PNP polymorphisms: impact on arsenic methylation and implications for disease susceptibility, Environ. Res., 132, 156–167.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Mauro, M., Caradonna, F., and Klein, C. B. (2016) Dysregulation of DNA methylation induced by past arsenic treatment causes persistent genomic instability in mammalian cells, Environ. Mol. Mutagen., 57, 137–150.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Pratheeshkumar, P., Son, Y. O., Divya, S. P., Wang, L., Zhang, Z., and Shi, X. (2016) Oncogenic transformation of human lung bronchial epithelial cells induced by arsenic involves ROS-dependent activation of STAT3-miR-21-PDCD4 mechanism, Sci. Rep., 6, 37227.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Ahmed, S., Moore, S. E., Kippler, M., Gardner, R., Hawlader, M. D., Wagatsuma, Y., Raqib, R., and Vahter, M. (2014) Arsenic exposure and cell-mediated immunity in pre-school children in rural Bangladesh, Toxicol. Sci., 141, 166–175.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Chang, Q., Chen, B., Thakur, C., Lu, Y., and Chen, F. (2014) Arsenic-induced sub-lethal stress reprograms human bronchial epithelial cells to CD61 cancer stem cells, Oncotarget, 5, 1290–1303.

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Dahlin, D. C., Miwa, G. T., Lu, A. Y., and Nelson, S. D. (1984) N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen, Proc. Natl. Acad. Sci. USA, 81, 1327–1331.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Trettin, A., Bohmer, A., Suchy, M. T., Probst, I., Staerk, U., Stichtenoth, D. O., Frolich, J. C., and Tsikas, D. (2014) Effects of paracetamol on NOS, COX, and CYP activity and on oxidative stress in healthy male subjects, rat hepatocytes, and recombinant NOS, Oxid. Med. Cell Longev., 2014, 212576.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. 28.

    McGill, M. R., and Jaeschke, H. (2013) Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis, Pharm. Res., 30, 2174–2187.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Hinson, J. A. (1983) Reactive metabolites of phenacetin and acetaminophen: a review, Environ. Health Perspect., 49, 71–79.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Choueiri, T. K., Je, Y., and Cho, E. (2014) Analgesic use and the risk of kidney cancer: a meta-analysis of epidemio-logic studies, Int. J. Cancer, 134, 384–396.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Saeed, M., Rogan, E., and Cavalieri, E. (2009) Mechanism of metabolic activation and DNA adduct formation by the human carcinogen diethylstilbestrol: the defining link to natural estrogens, Int. J. Cancer, 124, 1276–1284.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Dunlap, T. L., Wang, S., Simmler, C., Chen, S. N., Pauli, G. F., Dietz, B. M., and Bolton, J. L. (2015) Differential effects of glycyrrhiza species on genotoxic estrogen metabolism: licochalcone A downregulates P450 1B1, whereas isoliquiritigenin stimulates it, Chem. Res. Toxicol., 28, 1584–1594.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Cavalieri, E., and Rogan, E. (2014) The molecular etiology and prevention of estrogen-initiated cancers: Ockham’s Razor: “Pluralitas non est ponenda sine necessitate”. Plurality should not be posited without necessity, Mol. Aspects Med., 36, 1–55.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Laronda, M. M., Unno, K., Butler, L. M., and Kurita, T. (2012) The development of cervical and vaginal adenosis as a result of diethylstilbestrol exposure in utero, Differentiation, 84, 252–260.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Yamashita, S., Takayanagi, A., and Shimizu, N. (2001) Effects of neonatal diethylstilbestrol exposure on c-fos and c-jun protooncogene expression in the mouse uterus, Histol. Histopathol., 16, 131–140.

    CAS  PubMed  Google Scholar 

  36. 36.

    Hilakivi-Clarke, L. (2014) Maternal exposure to diethyl-stilbestrol during pregnancy and increased breast cancer risk in daughters, Breast Cancer Res., 16, 208.

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Imamichi, Y., Sekiguchi, T., Kitano, T., Kajitani, T., Okada, R., Inaoka, Y., Miyamoto, K., Uwada, J., Takahashi, S., Nemoto, T., Mano, A., Khan, M. R. I., Islam, M. T., Yuhki, K. I., Kashiwagi, H., Ushikubi, F., Suzuki, N., Taniguchi, T., and Yazawa, T. (2017) Diethylstilbestrol administration inhibits theca cell andro-gen and granulosa cell estrogen production in immature rat ovary, Sci. Rep., 7, 8374.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. 38.

    Stiborova, M., Arlt, V. M., and Schmeiser, H. H. (2016) Balkan endemic nephropathy: an update on its aetiology, Arch. Toxicol., 90, 2595–2615.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Reljic, Z., Zlatovic, M., Savic-Radojevic, A., Pekmezovic, T., Djukanovic, L., Matic, M., Pljesa-Ercegovac, M., Mimic-Oka, J., Opsenica, D., and Simic, T. (2014) Is increased susceptibility to Balkan endemic nephropathy in carriers of common GSTA1 (*A/*B) polymorphism linked with the catalytic role of GSTA1 in ochratoxin a biotransformation? Serbian case control study and in silico analysis, Toxins (Basel), 6, 2348–2362.

    Article  CAS  Google Scholar 

  40. 40.

    Chen, B., Bai, Y., Sun, M., Ni, X., Yang, Y., Yang, Y., Zheng, S., Xu, F., and Dai, S. (2012) Glutathione S-trans-ferases T1 null genotype is associated with susceptibility to aristolochic acid nephropathy, Int. Urol. Nephrol., 44, 301–307.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Hope, C. M., Coates, P. T., and Carroll, R. P. (2015) Immune profiling and cancer post transplantation, World J. Nephrol., 4, 41–56.

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Santana, A. L., Felsen, D., and Carucci, J. A. (2017) Interleukin-22 and cyclosporine in aggressive cutaneous squamous cell carcinoma, Clin. Dermatol., 35, 73–84.

    CAS  Article  Google Scholar 

  43. 43.

    Nardinocchi, L., Sonego, G., Passarelli, F., Avitabile, S., Scarponi, C., Failla, C. M., Simoni, S., Albanesi, C., and Cavani, A. (2015) Interleukin-17 and interleukin-22 promote tumor progression in human nonmelanoma skin cancer, Eur. J. Immunol., 45, 922–931.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Geissler, E. K. (2015) Skin cancer in solid organ transplant recipients: are mTOR inhibitors a game changer? Trans. Res., 4, 1–6.

    Google Scholar 

  45. 45.

    Seront, E., Pinto, A., Bouzin, C., Bertrand, L., Machiels, J. P., and Feron, O. (2013) PTEN deficiency is associated with reduced sensitivity to mTOR inhibitor in human bladder cancer through the unhampered feedback loop driving PI3K/Akt activation, Br. J. Cancer, 109, 1586–1592.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Dao, V., Pandeswara, S., Liu, Y., Hurez, V., Dodds, S., Callaway, D., Liu, A., Hasty, P., Sharp, Z. D., and Curiel, T. J. (2015) Prevention of carcinogen and inflammation-induced dermal cancer by oral rapamycin includes reducing genetic damage, Cancer Prevent. Res., 8, 400–409.

    CAS  Article  Google Scholar 

  47. 47.

    Overall evaluations of carcinogenicity: an updating of IARC Monographs volumes 1 to 42 (1987) IARC Monogr. Eval. Carcinog. Risks Hum. Suppl., 7, 1–440.

    Google Scholar 

  48. 48.

    Wierecky, J., Kollmannsberger, C., Boehlke, I., Kuczyk, M., Schleicher, J., Schleucher, N., Metzner, B., Kanz, L., Hartmann, J. T., and Bokemeyer, C. (2005) Secondary leukemia after first-line high-dose chemotherapy for patients with advanced germ cell cancer, J. Cancer Res. Clin. Oncol., 131, 255–260.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Travis, L. B., Fossa, S. D., Schonfeld, S. J., McMaster, M. L., Lynch, C. F., Storm, H., Hall, P., Holowaty, E., Andersen, A., Pukkala, E., Andersson, M., Kaijser, M., Gospodarowicz, M., Joensuu, T., Cohen, R. J., Boice, J. D., Jr., Dores, G. M., and Gilbert, E. S. (2005) Second cancers among 40,576 testicular cancer patients: focus on long-term survivors, J. Natl. Cancer Inst., 97, 1354–1365.

    PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Gietema, J. A., Meinardi, M. T., Messerschmidt, J., Gelevert, T., Alt, F., Uges, D. R., and Sleijfer, D. T. (2000) Circulating plasma platinum more than 10 years after cis-platin treatment for testicular cancer, Lancet, 355, 1075–1076.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Liang, F., Zhang, S., Xue, H., and Chen, Q. (2017) Risk of second primary cancers in cancer patients treated with cis-platin: a systematic review and meta-analysis of randomized studies, BMC Cancer, 17, 871.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. 52.

    Seedhouse, C., and Russell, N. (2007) Advances in the understanding of susceptibility to treatment-related acute myeloid leukaemia, Br. J. Haematol., 137, 513–529.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Moiseev, A. A., Khrunin, A. V., Pavlyushina, E. M., Pirogova, N. A., Gorbunova, V. A., and Limborskaya, S. A. (2008) Polymorphism in glutathione-S-transferase genes related to ovarian cancer chemotherapy, Vestnik RONTs im. Blokhina RAMN, 19, 59–63.

    Google Scholar 

  54. 54.

    Jia, M., Zhu, M., Wang, M., Sun, M., Qian, J., Ding, F., Chang, J., and Wei, Q. (2016) Genetic variants of GADD45A, GADD45B and MAPK14 predict platinum-based chemotherapy-induced toxicities in Chinese patients with non-small cell lung cancer, Oncotarget, 7, 25291–25303.

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Ye, J., Chu, T., Li, R., Niu, Y., Jin, B., Xia, J., Shao, M., and Han, B. (2015) Pol zeta polymorphisms are associated with platinum based chemotherapy response and side effects among non-small cell lung cancer patients, Neoplasma, 62, 833–839.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Scharfe, C. P. I., Tremmel, R., Schwab, M., Kohlbacher, O., and Marks, D. S. (2017) Genetic variation in human drug-related genes, Genome Medicine, 9, 117.

  57. 57.

    El-Serafi, I., Afsharian, P., Moshfegh, A., Hassan, M., and Terelius, Y. (2015) Cytochrome P450 oxidoreductase influences CYP2B6 activity in cyclophosphamide bioactivation, PLoS One, 10, e0141979.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  58. 58.

    Helsby, N. A., Hui, C. Y., Goldthorpe, M. A., Coller, J. K., Soh, M. C., Gow, P. J., De Zoysa, J. Z., and Tingle, M. D. (2010) The combined impact of CYP2C19 and CYP2B6 pharmacogenetics on cyclophosphamide bioactivation, Br. J. Clin. Pharmacol., 70, 844–853.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Lang, T., Klein, K., Fischer, J., Nussler, A. K., Neuhaus, P., Hofmann, U., Eichelbaum, M., Schwab, M., and Zanger, U. M. (2001) Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver, Pharmacogenetics, 11, 399–415.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Wang, S. L., Han, J. F., He, X. Y., Wang, X. R., and Hong, J. Y. (2007) Genetic variation of human cytochrome P450 reductase as a potential biomarker for mitomycin C-induced cytotoxicity, Drug Metab. Dispos., 35, 176–179.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Brayboy, L. M., Oulhen, N., Long, S., Voigt, N., Raker, C., and Wessel, G. M. (2017) Multidrug resistance transporter-1 and breast cancer resistance protein protect against ovarian toxicity, and are essential in ovarian physiology, Reprod. Toxicol., 69, 121–131.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Prasad, S., Tripathi, D., Rai, M. K., Aggarwal, S., Mittal, B., and Agarwal, V. (2014) Multidrug resistance protein-1 expression, function and polymorphisms in patients with rheumatoid arthritis not responding to methotrexate, Int. J. Rheum. Dis., 17, 878–886.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Islam, M. S., Islam, M. S., Parvin, S., Ahmed, M. U., Bin Sayeed, M. S., Uddin, M. M., Hussain, S. M., and Hasnat, A. (2015) Effect of GSTP1 and ABCC4 gene polymorphisms on response and toxicity of cyclophosphamide-epirubicin-5-fluorouracil-based chemotherapy in Bangladeshi breast cancer patients, Tumour Biol., 36, 5451–5457.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Ezoe, S. (2012) Secondary leukemia associated with the anti-cancer agent, etoposide, a topoisomerase II inhibitor, Int. J. Environ. Res. Public Health, 9, 2444–2453.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Zhuo, X., Zheng, N., Felix, C. A., and Blair, I. A. (2004) Kinetics and regulation of cytochrome P450-mediated etoposide metabolism, Drug Metab. Dispos., 32, 993–1000.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Smith, N. A., Byl, J. A., Mercer, S. L., Deweese, J. E., and Osheroff, N. (2014) Etoposide quinone is a covalent poison of human topoisomerase IIbeta etoposide quinone is a covalent poison of human topoisomerase IIbeta, Biochemistry, 53, 3229–3236.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Atwal, M., Lishman, E. L., Austin, C. A., and Cowell, I. G. (2017) Myeloperoxidase enhances etoposide and mitox-antrone-mediated DNA damage: a target for myeloprotec-tion in cancer chemotherapy, Mol. Pharmacol., 91, 49–57.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Attia, S. M., Ahmad, S. F., Abd-Ellah, M. F., Hamada, F. M., and Bakheet, S. A. (2013) Germ cell mutagenicity of topoisomerase I inhibitor topotecan detected in the male mouse-dominant lethal study, Food Chem. Toxicol., 62, 470–474.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Santos, A., Zanetta, S., Cresteil, T., Deroussent, A., Pein, F., Raymond, E., Vernillet, L., Risse, M. L., Boige, V., Gouyette, A., and Vassal, G. (2000) Metabolism of irinote-can (CPT-11) by CYP3A4 and CYP3A5 in humans, Clin. Cancer Res., 6, 2012–2020.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Sai, K., Saito, Y., Tatewaki, N., Hosokawa, M., Kaniwa, N., Nishimaki-Mogami, T., Naito, M., Sawada, J., Shirao, K., Hamaguchi, T., Yamamoto, N., Kunitoh, H., Tamura, T., Yamada, Y., Ohe, Y., Yoshida, T., Minami, H., Ohtsu, A., Matsumura, Y., Saijo, N., and Okuda, H. (2010) Association of carboxylesterase 1A genotypes with irinote-can pharmacokinetics in Japanese cancer patients, Br. J. Clin. Pharmacol., 70, 222–233.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Cecchin, E., De Mattia, E., Ecca, F., and Toffoli, G. (2018) Host genetic profiling to increase drug safety in colorectal cancer from discovery to implementation, Drug Resist. Update, 39, 18–40.

    Article  Google Scholar 

  72. 72.

    Huang, S. H., Chao, Y., Wu, Y. Y., Luo, J. C., Kao, C. H., Yen, S. H., and Li, C. P. (2011) Concurrence of UGT1A polymorphism and end-stage renal disease leads to severe toxicities of irinotecan in a patient with metastatic colon cancer, Tumori, 97, 243–247.

    PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Cecchin, E., Innocenti, F., D’Andrea, M., Corona, G., De Mattia, E., Biason, P., Buonadonna, A., and Toffoli, G. (2009) Predictive role of the UGT1A1, UGT1A7, and UGT1A9 genetic variants and their haplotypes on the outcome of metastatic colorectal cancer patients treated with fluorouracil, leucovorin, and irinotecan, J. Clin. Oncol., 27, 2457–2465.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Sai, K., and Saito, Y. (2011) Ethnic differences in the metabolism, toxicology and efficacy of three anticancer drugs, Exp. Opin. Drug Metab. Toxicol., 7, 967–988.

    CAS  Article  Google Scholar 

  75. 75.

    Lopes, L. F., Piccoli Fde, S., Paixao, V. A., Latorre Mdo, R., Camargo, B., Simpson, A. J., and Caballero, O. L. (2004) Association of CYP3A4 genotype with detection of Vgamma/Jbeta trans-rearrangements in the peripheral blood leukocytes of pediatric cancer patients undergoing chemotherapy for ALL, Leuk. Res., 28, 1281–1286.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Larson, R. A., Wang, Y., Banerjee, M., Wiemels, J., Hartford, C., Le Beau, M. M., and Smith, M. T. (1999) Prevalence of the inactivating 609C->T polymorphism in the NAD(P)H:quinone oxidoreductase (NQO1) gene in patients with primary and therapy-related myeloid leukemia, Blood, 94, 803–807.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Voso, M. T., Fabiani, E., D’Alo, F., Guidi, F., Di Ruscio, A., Sica, S., Pagano, L., Greco, M., Hohaus, S., and Leone, G. (2007) Increased risk of acute myeloid leukaemia due to polymorphisms in detoxification and DNA repair enzymes, Ann. Oncol., 18, 1523–1528.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Veitch, Z. W., Guo, B., Hembruff, S. L., Bewick, A. J., Heibein, A. D., Eng, J., Cull, S., Maclean, D. A., and Parissenti, A. M. (2009) Induction of 1C aldo-keto reductases and other drug dose-dependent genes upon acquisition of anthracycline resistance, Pharmacogen. Genom., 19, 477–488.

    CAS  Article  Google Scholar 

  79. 79.

    Huang, Z., Wang, J., Qian, J., Li, Y., Xu, Z., Chen, M., and Tong, H. (2017) Effects of cytochrome P450 family 3 subfamily A member 5 gene polymorphisms on daunoru-bicin metabolism and adverse reactions in patients with acute leukemia, Mol. Med. Rep., 15, 3493–3498.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Penning, T. M. (2017) Aldo-keto reductase regulation by the Nrf2 system: implications for stress response, chemotherapy drug resistance, carcinogenesis, Chem. Res. Toxicol., 30, 162–176.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Edwardson, D. W., Narendrula, R., Chewchuk, S., Mispel-Beyer, K., Mapletoft, J. P., and Parissenti, A. M. (2015) Role of drug metabolism in the cytotoxicity and clinical efficacy of anthracyclines, Curr. Drug Metab., 16, 412–426.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Lal, S., Mahajan, A., Chen, W. N., and Chowbay, B. (2010) Pharmacogenetics of target genes across doxorubicin disposition pathway: a review, Curr. Drug Metab., 11, 115–128.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    IARC monographs program on the evaluation of the carcinogenic risk of chemicals to humans. Preamble (1986) IARC Monogr. Eval. Carcinog. Risk. Chem. Hum., 39, 13–32.

    Google Scholar 

  84. 84.

    Karran, P. (2006) Thiopurines, DNA damage, DNA repair and therapy-related cancer, Br. Med. Bull., 79-80, 153–170.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  85. 85.

    Bodo, S., Svrcek, M., Sourrouille, I., Cuillieres-Dartigues, P., Ledent, T., Dumont, S., Dinard, L., Lafitte, P., Capel, C., Collura, A., Buhard, O., Wanherdrick, K., Chalastanis, A., Penard-Lacronique, V., Fabiani, B., Flejou, J. F., Brousse, N., Beaugerie, L., Duval, A., and Muleris, M. (2015) Azathioprine induction of tumors with microsatellite instability: risk evaluation using a mouse model, Oncotarget, 6, 24969–24977.

    PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Bo, J., Schroder, H., Kristinsson, J., Madsen, B., Szumlanski, C., Weinshilboum, R., Andersen, J. B., and Schmiegelow, K. (1999) Possible carcinogenic effect of 6-mercaptopurine on bone marrow stem cells: relation to thiopurine metabolism, Cancer, 86, 1080–1086.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Relling, M. V., Yanishevski, Y., Nemec, J., Evans, W. E., Boyett, J. M., Behm, F. G., and Pui, C. H. (1998) Etoposide and antimetabolite pharmacology in patients who develop secondary acute myeloid leukemia, Leukemia, 12, 346–352.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Schmiegelow, K., Al-Modhwahi, I., Andersen, M. K., Behrendtz, M., Forestier, E., Hasle, H., Heyman, M., Kristinsson, J., Nersting, J., Nygaard, R., Svendsen, A. L., Vettenranta, K., and Weinshilboum, R. (2009) Methotrexate/6-mercaptopurine maintenance therapy influences the risk of a second malignant neoplasm after childhood acute lymphoblastic leukemia: results from the NOPHO ALL-92 study, Blood, 113, 6077–6084.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Higginson, J., and DeVita, V. T., Jr. (1980) IARC monographs on the evaluation of carcinogenic risk of chemicals to humans, Am. Ind. Hyg. Assoc. J., 41, A26, A28, A30.

    Google Scholar 

  90. 90.

    Minoia, C., Sgherza, N., Loseto, G., Greco, G., Buquicchio, C., Merchionne, F., Toldo, C., Galise, I., Melpignano, A., Tarantini, G., Pavone, V., and Guarini, A. (2015) Azacitidine in the front-line treatment of therapy-related myeloid neoplasms: a multicenter case series, Anticancer Res., 35, 461–466.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Prebet, T., Sun, Z., Ketterling, R. P., Zeidan, A., Greenberg, P., Herman, J., Juckett, M., Smith, M. R., Malick, L., Paietta, E., Czader, M., Figueroa, M., Gabrilove, J., Erba, H. P., Tallman, M. S., Litzow, M., Gore, S. D., and Eastern Cooperative Oncology Group and North American Leukemia intergroup (2016) Azacitidine with or without Entinostat for the treatment of therapy-related myeloid neoplasm: further results of the E1905 North American Leukemia Intergroup study, Br. J. Haematol., 172, 384–391.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92.

    Bland, A. E., Calingaert, B., Secord, A. A., Lee, P. S., Valea, F. A., Berchuck, A., Soper, J. T., and Havrilesky, L. (2009) Relationship between tamoxifen use and high risk endometrial cancer histologic types, Gynecol. Oncol., 112, 150–154.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Hu, R., Hilakivi-Clarke, L., and Clarke, R. (2015) Molecular mechanisms of tamoxifen-associated endome-trial cancer (review), Oncol. Lett., 9, 1495–1501.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    De Vries Schultink, A. H., Zwart, W., Linn, S. C., Beijnen, J. H., and Huitema, A. D. (2015) Effects of pharmacoge-netics on the pharmacokinetics and pharmacodynamics of tamoxifen, Clin. Pharmacokinet., 54, 797–810.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  95. 95.

    Williams, G. M., Iatropoulos, M. J., Djordjevic, M. V., and Kaltenberg, O. P. (1993) The triphenylethylene drug tamoxifen is a strong liver carcinogen in the rat, Carcinogenesis, 14, 315–317.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. 96.

    Nagy, E., Gajjar, K. B., Patel, I. I., Taylor, S., Martin-Hirsch, P. L., Stringfellow, H. F., Martin, F. L., and Phillips, D. H. (2014) MGMT promoter hypermethylation and K-RAS, PTEN and TP53 mutations in tamoxifen-exposed and non-exposed endometrial cancer cases, Br. J. Cancer, 110, 2874–2880.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Orsted, D. D., and Bojesen, S. E. (2013) The link between benign prostatic hyperplasia and prostate cancer, Nat. Rev. Urol., 10, 49–54.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. 98.

    Azzouni, F., Godoy, A., Li, Y., and Mohler, J. (2012) The 5 alpha-reductase isozyme family: a review of basic biology and their role in human diseases, Adv. Urol., 2012, 530121.

    PubMed  Article  PubMed Central  Google Scholar 

  99. 99.

    Seyfizadeh, N., Seyfizadeh, N., Hasenkamp, J., and Huerta-Yepez, S. (2016) A molecular perspective on rituximab: a monoclonal antibody for B cell non-Hodgkin lymphoma and other affections, Crit. Rev. Oncol. Hematol., 97, 275–290.

    PubMed  Article  PubMed Central  Google Scholar 

  100. 100.

    Tarella, C., Passera, R., Magni, M., Benedetti, F., Rossi, A., Gueli, A., Patti, C., Parvis, G., Ciceri, F., Gallamini, A., Cortelazzo, S., Zoli, V., Corradini, P., Carobbio, A., Mule, A., Bosa, M., Barbui, A., Di Nicola, M., Sorio, M., Caracciolo, D., Gianni, A. M., and Rambaldi, A. (2011) Risk factors for the development of secondary malignancy after high-dose chemotherapy and autograft, with or without rituximab: a 20-year retrospective follow-up study in patients with lymphoma, J. Clin. Oncol., 29, 814–824.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. 101.

    Benjamini, O., Jain, P., Trinh, L., Qiao, W., Strom, S. S., Lerner, S., Wang, X., Burger, J., Ferrajoli, A., Kantarjian, H., O’Brien, S., Wierda, W., Estrov, Z., and Keating, M. (2015) Second cancers in patients with chronic lympho-cytic leukemia who received frontline fludarabine, cyclophosphamide and rituximab therapy: distribution and clinical outcomes, Leuk. Lymph., 56, 1643–1650.

    CAS  Article  Google Scholar 

  102. 102.

    Yang, B., Lu, X. C., Yu, R. L., Chi, X. H., Zhang, W. Y., Zhu, H. L., Yuan, J., and Zhao, P. (2012) Diagnosis and treatment of rituximab-induced acute tumor lysis syndrome in patients with diffuse large B-cell lymphoma, Am. J. Med. Sci., 343, 337–341.

    PubMed  Article  PubMed Central  Google Scholar 

  103. 103.

    Baldo, B. A. (2013) Adverse events to monoclonal antibodies used for cancer therapy: focus on hypersensitivity responses, Oncoimmunology, 2, e26333.

    PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Miles, M. A., and Hawkins, C. J. (2017) Executioner cas-pases and CAD are essential for mutagenesis induced by TRAIL or vincristine, Cell Death Dis., 8, 3062.

    Article  Google Scholar 

  105. 105.

    Lovric, M. M., and Hawkins, C. J. (2010) TRAIL treatment provokes mutations in surviving cells, Oncogene, 29, 5048–5060.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Miles, M. A., Shekhar, T. M., Hall, N. E., and Hawkins, C. J. (2016) TRAIL causes deletions at the HPRT and TK1 loci of clonogenically competent cells, Mut. Res., 787, 15–31.

    CAS  Article  Google Scholar 

  107. 107.

    Ko, J. C., Hong, J. H., Wang, L. H., and Lin, Y. W. (2008) The role of repair protein Rad51 in synergistic cytotoxici-ty and mutagenicity induced by epidermal growth factor receptor inhibitor (Gefitinib, IressaR) and benzo[a]pyrene in human lung cancer, Exp. Cell Res., 314, 1881–1891.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  108. 108.

    Novak, M., Zegura, B., Nunic, J., Gajski, G., Geric, M., Garaj-Vrhovac, V., and Filipic, M. (2017) Assessment of the genotoxicity of the tyrosine kinase inhibitor imatinibmesylate in cultured fish and human cells, Mutat. Res., 814, 14–21.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  109. 109.

    Guha, T., and Malkin, D. (2017) Inherited TP53 mutations and the Li-Fraumeni syndrome, Cold Spring Harb. Perspect. Med., 3, 1–12.

    Google Scholar 

  110. 110.

    Link, D. C., Schuettpelz, L. G., Shen, D., Wang, J., Walter, M. J., Kulkarni, S., Payton, J. E., Ivanovich, J., Goodfellow, P. J., Le Beau, M., Koboldt, D. C., Dooling, D. J., Fulton, R. S., Bender, R. H., Fulton, L. L., Delehaunty, K. D., Fronick, C. C., Appelbaum, E. L., Schmidt, H., Abbott, R., O’Laughlin, M., Chen, K., McLellan, M. D., Varghese, N., Nagarajan, R., Heath, S., Graubert, T. A., Ding, L., Ley, T. J., Zambetti, G. P., Wilson, R. K., and Mardis, E. R. (2011) Identification of a novel TP53 cancer susceptibility mutation through whole-genome sequencing of a patient with therapy-related AML, J. Am. Med. Assoc., 305, 1568–1576.

    CAS  Article  Google Scholar 

  111. 111.

    Sharif, S., Ferner, R., Birch, J. M., Gillespie, J. E., Gattamaneni, H. R., Baser, M. E., and Evans, D. G. (2006) Second primary tumors in neurofibromatosis 1 patients treated for optic glioma: substantial risks after radiotherapy, J. Clin. Oncol., 24, 2570–2575.

    PubMed  Article  PubMed Central  Google Scholar 

  112. 112.

    Foulkes, W. D., Kamihara, J., Evans, D. G. R., Brugieres, L., Bourdeaut, F., Molenaar, J. J., Walsh, M. F., Brodeur, G. M., and Diller, L. (2017) Cancer surveillance in Gorlin syndrome and rhabdoid tumor predisposition syndrome, Clin. Cancer Res., 15, 62–67.

    Article  CAS  Google Scholar 

  113. 113.

    Lee, J. S., Padilla, B., DuBois, S. G., Oates, A., Boscardin, J., and Goldsby, R. E. (2015) Second malignant neoplasms among children, adolescents and young adults with Wilms tumor, Pediatr. Blood Cancer, 62, 1259–1264.

    PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Johnson, L. A., Malayappan, B., Tretyakova, N., Campbell, C., MacMillan, M. L., Wagner, J. E., and Jacobson, P. A. (2012) Formation of cyclophosphamide specific DNA adducts in hematological diseases, Pediatr. Blood Cancer, 58, 708–714.

    PubMed  Article  PubMed Central  Google Scholar 

  115. 115.

    McNerney, M. E., Godley, L. A., and Le Beau, M. M. (2017) Therapy-related myeloid neoplasms: when genetics and environment collide, Nat. Rev. Cancer, 17, 513–527.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  116. 116.

    Betti, M., Aspesi, A., Biasi, A., Casalone, E., Ferrante, D., Ogliara, P., Gironi, L. C., Giorgione, R., Farinelli, P., Grosso, F., Libener, R., Rosato, S., Turchetti, D., Maffe, A., Casadio, C., Ascoli, V., Dianzani, C., Colombo, E., Piccolini, E., Pavesi, M., Miccoli, S., Mirabelli, D., Bracco, C., Righi, L., Boldorini, R., Papotti, M., Matullo, G., Magnani, C., Pasini, B., and Dianzani, I. (2016) CDKN2A and BAP1 germline mutations predispose to melanoma and mesothelioma, Cancer Lett., 10, 120–130.

    Article  CAS  Google Scholar 

  117. 117.

    Bhatia, S. (2015) Genetic variation as a modifier of association between therapeutic exposure and subsequent malignant neoplasms in cancer survivors, Cancer, 121, 648–663.

    PubMed  Article  PubMed Central  Google Scholar 

  118. 118.

    Voso, M. T., Fabiani, E., D’Alo, F., Guidi, F., Di Ruscio, A., Sica, S., Pagano, L., Greco, M., Hohaus, S., and Leone, G. (2007) Increased risk of acute myeloid leukaemia due to polymorphisms in detoxification and DNA repair enzymes, Ann. Oncol., 18, 1523–1528.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  119. 119.

    Bhatia, S. (2011) Role of genetic susceptibility in development of treatment-related adverse outcomes in cancer survivors, Cancer Epidemiol. Biomark. Prevent., 20, 2048–2067.

    Article  Google Scholar 

  120. 120.

    Dohner, H., Estey, E., Grimwade, D., Amadori, S., Appelbaum, F. R., Buchner, T., Dombret, H., Ebert, B. L., Fenaux, P., Larson, R. A., Levine, R. L., Lo-Coco, F., Naoe, T., Niederwieser, D., Ossenkoppele, G. J., Sanz, M., Sierra, J., Tallman, M. S., Tien, H. F., Wei, A. H., Lowenberg, B., and Bloomfield, C. D. (2017) Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel, Blood, 129, 424–447.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  121. 121.

    Cabezas, M., Garcia-Quevedo, L., Alonso, C., Manubens, M., Alvarez, Y., Barquinero, J. F., Ramon, Y., Cajal, S., Ortega, M., Blanco, A., Caballin, M. R., and Armengol, G. (2019) Polymorphisms in MDM2 and TP53 genes and risk of developing therapy-related myeloid neoplasms, Sci. Rep., 9, 150.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  122. 122.

    Knight, J. A., Skol, A. D., Shinde, A., Hastings, D., Walgren, R. A., Shao, J., Tennant, T. R., Banerjee, M., Allan, J. M., Le Beau, M. M., Larson, R. A., Graubert, T. A., Cox, N. J., and Onel, K. (2009) Genome-wide association study to identify novel loci associated with therapy-related myeloid leukemia susceptibility, Blood, 113, 5575–5582.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. 123.

    Allan, J. M., Smith, A. G., Wheatley, K., Hills, R. K., Travis, L. B., Hill, D. A., Swirsky, D. M., Morgan, G. J., and Wild, C. P. (2004) Genetic variation in XPD predicts treatment outcome and risk of acute myeloid leukemia following chemotherapy, Blood, 104, 3872–3877.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  124. 124.

    Ellis, N. A., Huo, D., Yildiz, O., Worrillow, L. J., Banerjee, M., Le Beau, M. M., Larson, R. A., Allan, J. M., and Onel, K. (2008) MDM2 SNP309 and TP53 Arg72Pro interact to alter therapy-related acute myeloid leukemia susceptibility, Blood, 112, 741–749.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Rigter, L. S., Snaebjornsson, P., Rosenberg, E. H., Atmodimedjo, P. N., Aleman, B. M., Ten Hoeve, J., Geurts-Giele, W. R., van Ravesteyn, T. W., Hoeksel, J., Meijer, G. A., Te Riele, H., van Leeuwen, F. E., Dinjens, W. N., and van Leerdam, M. E. (2018) Double somatic mutations in mismatch repair genes are frequent in col-orectal cancer after Hodgkin’s lymphoma treatment, Gut, 67, 447–455.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  126. 126.

    Guillem, V. M., Collado, M., Terol, M. J., Calasanz, M. J., Esteve, J., Gonzalez, M., Sanzo, C., Nomdedeu, J., Bolufer, P., Lluch, A., and Tormo, M. (2007) Role of MTHFR (677, 1298) haplotype in the risk of developing secondary leukemia after treatment of breast cancer and hematological malignancies, Leukemia, 21, 1413–1422.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  127. 127.

    Seedhouse, C., Bainton, R., Lewis, M., Harding, A., Russell, N., and Das-Gupta, E. (2002) The genotype distribution of the XRCC1 gene indicates a role for base excision repair in the development of therapy-related acute myeloblastic leukemia, Blood, 100, 3761–3766.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  128. 128.

    Berger, M., Habs, M., and Schmahl, D. (1983) Noncarcinogenic chemotherapy with a combination of vincristine, methotrexate and 5-fluorouracil (VMF) in rats, Int. J. Cancer, 32, 231–236.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  129. 129.

    Some antineoplastic and immunosuppressive agents (1981) IARC Monogr. Eval. Carcinog. Risk. Chem. Hum., 26, 1–411.

    Google Scholar 

  130. 130.

    Schonfeld, S. J., Gilbert, E. S., Dores, G. M., Lynch, C. F., Hodgson, D. C., Hall, P., Storm, H., Andersen, A., Pukkala, E., Holowaty, E., Kaijser, M., Andersson, M., Joensuu, H., Fossa, S. D., Allan, J. M., and Travis, L. B. (2006) Acute myeloid leukemia following Hodgkin lym-phoma: a population-based study of 35,511 patients, J. Natl. Cancer Inst., 98, 215–218.

    PubMed  Article  PubMed Central  Google Scholar 

  131. 131.

    Duggan, D. B., Petroni, G. R., Johnson, J. L., Glick, J. H., Fisher, R. I., Connors, J. M., Canellos, G. P., and Peterson, B. A. (2003) Randomized comparison of ABVD and MOPP/ABV hybrid for the treatment of advanced Hodgkin’s disease: report of an intergroup trial, J. Clin. Oncol., 21, 607–614.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  132. 132.

    Delwail, V., Jais, J. P., Colonna, P., and Andrieu, J. M. (2002) Fifteen-year secondary leukaemia risk observed in 761 patients with Hodgkin’s disease prospectively treated by MOPP or ABVD chemotherapy plus high-dose irradiation, Br. J. Haematol., 118, 189–194.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  133. 133.

    Bonadonna, G., Viviani, S., Bonfante, V., Gianni, A. M., and Valagussa, P. (2005) Survival in Hodgkin’s disease patients - report of 25 years of experience at the Milan Cancer Institute, Eur. J. Cancer, 41, 998–1006.

    PubMed  Article  PubMed Central  Google Scholar 

  134. 134.

    Turcotte, L. M., Liu, Q., Yasui, Y., Arnold, M. A., Hammond, S., Howell, R. M., Smith, S. A., Weathers, R. E., Henderson, T. O., Gibson, T. M., Leisenring, W., Armstrong, G. T., Robison, L. L., and Neglia, J. P. (2017) Temporal trends in treatment and subsequent neoplasm risk among 5-year survivors of childhood cancer, 1970–2015, J. Am. Med. Assoc., 317, 814–824.

    Article  Google Scholar 

  135. 135.

    Miron, A., Aprotosoaie, A. C., Trifan, A., and Xiao, J. (2017) Flavonoids as modulators of metabolic enzymes and drug transporters, Ann. NY Acad. Sci., 1398, 152–167.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  136. 136.

    Poon, C. H., Wong, T. Y., Wang, Y., Tsuchiya, Y., Nakajima, M., Yokoi, T., and Leung, L. K. (2013) The citrus flavanone naringenin suppresses CYP1B1 transactiva-tion through antagonising xenobiotic-responsive element binding, Br. J. Nutr., 109, 1598–1605.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  137. 137.

    Li, C., Li, X., and Choi, J. S. (2009) Enhanced bioavail-ability of etoposide after oral or intravenous administration of etoposide with kaempferol in rats, Arch. Pharm. Res., 32, 133–138.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  138. 138.

    Li, X., and Choi, J. S. (2009) Effects of quercetin on the pharmacokinetics of etoposide after oral or intravenous administration of etoposide in rats, Anticancer Res., 29, 1411–1415.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139.

    Choi, J. S., Piao, Y. J., and Kang, K. W. (2011) Effects of quercetin on the bioavailability of doxorubicin in rats: role of CYP3A4 and P-gp inhibition by quercetin, Arch. Pharm. Res., 34, 607–613.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  140. 140.

    Gerl, A., and Schierl, R. (2000) Urinary excretion of platinum in chemotherapy-treated long-term survivors of tes-ticular cancer, Acta Oncol., 39, 519–522.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  141. 141.

    Dertinger, S. D., Avlasevich, S. L., Torous, D. K., Bemis, J. C., Phonethepswath, S., Labash, C., Carlson, K., Mereness, J., Cottom, J., Palis, J., and MacGregor, J. T. (2014) Persistence of cisplatin-induced mutagenicity in hematopoietic stem cells: implications for secondary cancer risk following chemotherapy, Toxicol. Sci., 140, 307–314.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  142. 142.

    Travis, L. B., Gospodarowicz, M., Curtis, R. E., Clarke, E. A., Andersson, M., Glimelius, B., Joensuu, T., Lynch, C. F., van Leeuwen, F. E., Holowaty, E., Storm, H., Glimelius, I., Pukkala, E., Stovall, M., Fraumeni, J. F., Jr., Boice, J. D., Jr., and Gilbert, E. (2002) Lung cancer following chemotherapy and radiotherapy for Hodgkin’s disease, J. Natl. Cancer Inst., 94, 182–192.

    PubMed  Article  PubMed Central  Google Scholar 

  143. 143.

    Cirmi, S., Ferlazzo, N., Lombardo, G. E., Maugeri, A., Calapai, G., Gangemi, S., and Navarra, M. (2016) Chemopreventive agents and inhibitors of cancer hallmarks: may citrus offer new perspectives? Nutrients, 8, E698.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  144. 144.

    George, V. C., Dellaire, G., and Rupasinghe, H. P. (2017) Plant flavonoids in cancer chemoprevention: role in genome stability, J. Nutr. Biochem., 45, 1–14.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  145. 145.

    Abdul, Q. A., Yu, B. P., Chung, H. Y., Jung, H. A., and Choi, J. S. (2017) Epigenetic modifications of gene expression by lifestyle and environment, Arch. Pharm. Res., 40, 1219–1237.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  146. 146.

    Xu, D. P., Li, Y., Meng, X., Zhou, T., Zhou, Y., Zheng, J., Zhang, J. J., and Li, H. B. (2017) Natural antioxidants in foods and medicinal plants: extraction, assessment and resources, Int. J. Mol. Sci., 18, E96.

    PubMed Central  Article  CAS  Google Scholar 

  147. 147.

    Bubols, G. B., Vianna, Dda R., Medina-Remon, A., von Poser, G., Lamuela-Raventos, R. M., Eifler-Lima, V. L., and Garcia, S. C. (2013) The antioxidant activity of coumarins and flavonoids, Mini Rev. Med. Chem., 13, 318–334.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Gonzalez, R., Ballester, I., Lopez-Posadas, R., Suarez, M. D., Zarzuelo, A., Martinez-Augustin, O., and Sanchez de Medina, F. (2011) Effects of flavonoids and other polyphe-nols on inflammation, Crit. Rev. Food Sci. Nutr., 51, 331–362.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  149. 149.

    Yahfoufi, N., Alsadi, N., Jambi, M., and Matar, C. (2018) The immunomodulatory and anti-inflammatory role of polyphenols, Nutrients, 10, E1618.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  150. 150.

    Benvenuto, M., Mattera, R., Taffera, G., Giganti, M. G., Lido, P., Masuelli, L., Modesti, A., and Bei, R. (2016) The potential protective effects of polyphenols in asbestos-mediated inflammation and carcinogenesis of mesothelium, Nutrients, 8, E275.

    PubMed Central  Article  CAS  Google Scholar 

  151. 151.

    Samadi, A. K., Bilsland, A., Georgakilas, A. G., Amedei, A., Amin, A., Bishayee, A., Azmi, A. S., Lokeshwar, B. L., Grue, B., Panis, C., Boosani, C. S., Poudyal, D., Stafforini, D. M., Bhakta, D., Niccolai, E., Guha, G., Vasantha Rupasinghe, H. P., Fujii, H., Honoki, K., Mehta, K., et al. (2015) A multi-targeted approach to suppress tumor-promoting inflammation, Semin. Cancer Biol., 35(Suppl. 1), S151–S184.

    Article  CAS  Google Scholar 

  152. 152.

    Amawi, H., Ashby, C. R., Jr., and Tiwari, A. K. (2017) Cancer chemoprevention through dietary flavonoids: what’s limiting? Chin. J. Cancer, 36, 50.

    PubMed  PubMed Central  Article  Google Scholar 

  153. 153.

    Mukherjee, S., Siddiqui, M. A., Dayal, S., Ayoub, Y. Z., and Malathi, K. (2014) Epigallocatechin-3-gallate suppresses proinflammatory cytokines and chemokines induced by Toll-like receptor 9 agonists in prostate cancer cells, J. Inflam. Res., 7, 89–101.

    CAS  Google Scholar 

  154. 154.

    Negri, A., Naponelli, V., Rizzi, F., and Bettuzzi, S. (2018) Molecular targets of epigallocatechin-gallate (EGCG): a special focus on signal transduction and cancer, Nutrients, 10, 1936.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  155. 155.

    Thakur, V. S., Gupta, K., and Gupta, S. (2012) The chemopreventive and chemotherapeutic potentials of tea polyphenols, Curr. Pharm. Biotechnol., 13, 191–199.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  156. 156.

    Tortorella, S. M., Royce, S. G., Licciardi, P. V., and Karagiannis, T. C. (2015) Dietary sulforaphane in cancer chemoprevention: the role of epigenetic regulation and HDAC inhibition, Antioxid. Redox Signal., 22, 1382–1424.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  157. 157.

    Zhou, Y., Zheng, J., Li, Y., Xu, D. P., Li, S., Chen, Y. M., and Li, H. B. (2016) Natural polyphenols for prevention and treatment of cancer, Nutrients, 8, E515.

    PubMed  Article  CAS  Google Scholar 

  158. 158.

    Fujiki, H., Watanabe, T., Sueoka, E., Rawangkan, A., and Suganuma, M. (2018) Prevention with green tea and its principal constituent, EGCG: from early investigations to current focus on human cancer stem cells, Mol. Cells, 28, 73–82.

    Google Scholar 

  159. 159.

    Fujiki, H., Sueoka, E., Rawangkan, A., and Suganuma, M. (2017) Human cancer stem cells are a target for cancer prevention using (-)-epigallocatechin gallate, J. Cancer Res. Clin. Oncol., 143, 2401–2412.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  160. 160.

    Lee, K. W., Kang, N. J., Heo, Y. S., Rogozin, E. A., Pugliese, A., Hwang, M. K., Bowden, G. T., Bode, A. M., Lee, H. J., and Dong, Z. (2008) Raf and MEK protein kinases are direct molecular targets for the chemopreven-tive effect of quercetin, a major flavonol in red wine, Cancer Res., 68, 946–955.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  161. 161.

    Ermakova, S., Choi, B. Y., Choi, H. S., Kang, B. S., Bode, A. M., and Dong, Z. (2005) The intermediate filament protein vimentin is a new target for epigallocatechin gal-late, J. Biol. Chem., 280, 16882–16890.

    CAS  PubMed  Article  Google Scholar 

  162. 162.

    Hazgui, S., Bonnomet, A., Nawrocki-Raby, B., Milliot, M., Terryn, C., Cutrona, J., Polette, M., Birembaut, P., and Zahm, J. M. (2008) Epigallocatechin-3-gallate (EGCG) inhibits the migratory behavior of tumor bronchial epithelial cells, Resp. Res., 9, 33.

    Article  CAS  Google Scholar 

  163. 163.

    Singh, T., and Katiyar, S. K. (2011) Green tea catechins reduce invasive potential of human melanoma cells by targeting COX-2, PGE2 receptors and epithelial-to-mes-enchymal transition, PLoS One, 6, e25224.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  164. 164.

    Avtanski, D., and Poretsky, L. (2018) Phyto-polyphenols as potential inhibitors of breast cancer metastasis, Mol. Med., 24, 2–17.

    Article  CAS  Google Scholar 

  165. 165.

    Li, A., Gu, K., Wang, Q., Chen, X., Fu, X., Wang, Y., and Wen, Y. (2018) Epigallocatechin-3-gallate affects the proliferation, apoptosis, migration and invasion of tongue squamous cell carcinoma through the hippo-TAZ signaling pathway, Int. J. Mol. Med., 42, 2615–2627.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. 166.

    Bode, A. M., and Dong, Z. (2013) Signal transduction and molecular targets of selected flavonoids, Antioxid. Redox Signal., 19, 163–180.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  167. 167.

    Yang, C. S., and Wang, H. (2016) Cancer preventive activities of tea catechins, Molecules, 21, 2–19.

    Google Scholar 

  168. 168.

    Rashidi, B., Malekzadeh, M., Goodarzi, M., Masoudifar, A., and Mirzaei, H. (2017) Green tea and its anti-angio-genesis effects, Biomed. Pharmacother., 89, 949–956.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  169. 169.

    Fantini, M., Benvenuto, M., Masuelli, L., Frajese, G. V., Tresoldi, I., Modesti, A., and Bei, R. (2015) Effects of combinations of polyphenols, or polyphenols and anticancer drugs: perspectives on cancer treatment, Int. J. Mol. Sci., 16, 9236–9282.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  170. 170.

    Friis, S., Kesminiene, A., Espina, C., Auvinen, A., Straif, K., and Schuz, J. (2015) European code against cancer 4th edition: medical exposures, including hormone therapy, cancer, Cancer Epidemiol., 39 (Suppl. 1), S107–S119.

    Article  Google Scholar 

  171. 171.

    Travis, L. B., Demark Wahnefried, W., Allan, J. M., Wood, M. E., and Ng, A. K. (2013) Aetiology, genetics and prevention of secondary neoplasms in adult cancer survivors, Nat. Rev. Clin. Oncol., 10, 289–301.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  172. 172.

    Belitskiy, G. A., Lesovaya, E. A., Kirsanov, K. I., and Yakubovskaya, M. G. (2016) Second primary malignancies in oncology patients: drug-related carcinogenesis in oncology, Usp. Mol. Onkol., 3, 44–55.

    Article  Google Scholar 

  173. 173.

    Belitsky, G. A., Kirsanov, K. I., Lesovaya, E. A., and Yakubovskaya, M. G. (2019) Prevention of therapy-related malignances in cancer survivors, Oncotarget, 10, 2114–2115.

    PubMed  PubMed Central  Article  Google Scholar 

  174. 174.

    Kirsanov, K. I., Vlasova, O. A., Fetisov, T. I., Zenkov, R. G., Lesovaya, E. A., Belitskiy, G. A., Gurova, K., and Yakubovskaya, M. G. (2018) Effects of DNA-tropic anti-carcinogenic compounds on gene expression regulation, Usp. Mol. Onkol., 5, 41–63.

    Article  Google Scholar 

Download references

Funding

Funding. The study was supported by the Russian Science Foundation (project 17-15-01526).

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. I. Kirsanov.

Ethics declarations

Compliance with ethical standards. This paper contains no description of studies with the involvement of humans or animals performed by any of the authors. The data presented in the review obtained elsewhere are provided with the relevant references prepared in accordance with general requirements and drafting rules (GOST R 7 05-2008).

Additional information

Conflict of interest. The authors declare no conflict of interest.

Russian Text © The Author(s), 2020, published in Uspekhi Biologicheskoi Khimii, 2020, Vol. 60, pp. 173-226.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belitskiy, G.A., Kirsanov, K.I., Lesovaya, E.A. et al. Drug-Related Carcinogenesis: Risk Factors and Approaches for Its Prevention. Biochemistry Moscow 85, 79–107 (2020). https://doi.org/10.1134/S0006297920140059

Download citation

Keywords

  • therapy-related carcinogenesis
  • secondary tumors
  • cancer prevention