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Mapping child growth failure across low- and 
middle-income countries

Local Burden of Disease Child Growth Failure Collaborators*

Childhood malnutrition is associated with high morbidity and mortality globally1. 
Undernourished children are more likely to experience cognitive, physical, and 
metabolic developmental impairments that can lead to later cardiovascular disease, 
reduced intellectual ability and school attainment, and reduced economic 
productivity in adulthood2. Child growth failure (CGF), expressed as stunting, 
wasting, and underweight in children under five years of age (0–59 months), is a 
specific subset of undernutrition characterized by insufficient height or weight 
against age-specific growth reference standards3–5. The prevalence of stunting, 
wasting, or underweight in children under five is the proportion of children with a 
height-for-age, weight-for-height, or weight-for-age z-score, respectively, that is more 
than two standard deviations below the World Health Organization’s median growth 
reference standards for a healthy population6. Subnational estimates of CGF report 
substantial heterogeneity within countries, but are available primarily at the first 
administrative level (for example, states or provinces)7; the uneven geographical 
distribution of CGF has motivated further calls for assessments that can match the 
local scale of many public health programmes8. Building from our previous work 
mapping CGF in Africa9, here we provide the first, to our knowledge, mapped high-
spatial-resolution estimates of CGF indicators from 2000 to 2017 across 105 low- and 
middle-income countries (LMICs), where 99% of affected children live1, aggregated to 
policy-relevant first and second (for example, districts or counties) administrative-
level units and national levels. Despite remarkable declines over the study period, 
many LMICs remain far from the ambitious World Health Organization Global 
Nutrition Targets to reduce stunting by 40% and wasting to less than 5% by 2025. Large 
disparities in prevalence and progress exist across and within countries; our maps 
identify high-prevalence areas even within nations otherwise succeeding in reducing 
overall CGF prevalence. By highlighting where the highest-need populations reside, 
these geospatial estimates can support policy-makers in planning interventions that 
are adapted locally and in efficiently directing resources towards reducing CGF and its 
health implications.

Despite improvements in nearly all LMICs, stunting remained the 
most widespread and prevalent indicator of CGF throughout the study 
period. Overall, estimated childhood stunting prevalence across LMICs 
decreased from 36.9% (95% uncertainty interval, 32.8–41.4%) in 2000 
to 26.6% (21.5–32.4%) in 2017. Progress was particularly noticeable in 
Central America and the Caribbean, Andean South America, North 
Africa, and East Asia regions, and in some coastal central and western 
sub-Saharan African (SSA) countries, where most areas with estimated 
stunting prevalence of at least 50% in 2000 had reduced to 30% or less 
by 2017 (Fig. 1a, b). By 2017, zones with the highest prevalence of stunt-
ing primarily persisted throughout much of the SSA, Central and South 
Asia, and Oceania regions, where large areas had estimated levels of 
at least 40%, such as in the first administrative-level units of Nigeria’s 
Jigawa state (60.6% (51.5–69.7%)), Burundi’s Karuzi province (60.0% 

(51.4–67.5%)), India’s Uttar Pradesh state (49.0% (48.5–49.5%)), and 
Laos’s Houaphan province (58.3% (50.7–66.8%)) (Extended Data Fig. 1). 
In 2017, Guatemala (47.0% (40.2–54.6%)), Niger (47.5% (42.2–53.9%)), 
Burundi (54.2% (46.3–61.2%)), Madagascar (49.8% (43.2–57.2%)), Timor-
Leste (49.8% (43.4–56.2%)), and Yemen (45.4% (38.8–51.5%)) had the 
highest national-level stunting prevalence.

Even within the aforementioned regions where reductions were most 
evident, local-level estimates revealed communities in which levels 
still approached those seen in SSA and South Asia; areas in southern 
Mexico and central Ecuador had estimated stunting prevalence of at 
least 40%, and areas in western Mongolia reached at least 30%. Wide 
within-country disparities were apparent in several instances, indicat-
ing large areas left behind by the general pace of progress that require 
attention (Fig. 1a, b). Although most countries successfully reduced 
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stunting prevalence, subnational inequalities (disparities between 
second administrative-level units (henceforth ‘units’)) remained  
widespread globally—especially evident in Vietnam, Honduras, Nigeria, 
and India (Extended Data Fig. 2). Among the top quintile of widest dis-
parities, Indonesia experienced a twofold difference in stunting levels 
in 2017, ranging from 21.0% (16.2–27.0%) in Kota Yogyakarta regency 
(Yogyakarta province) to 51.5% (40.6–62.3%) in Sumba Barat regency 
(Nusa Tenggara Timur province). Stunting levels varied fourfold in 
Nigeria, ranging from 14.7% (9.1–21.0%) in Surulere Local Government 
Area (Lagos state) to 64.2% (54.2–74.6%) in Gagarawa Local Government 
Area ( Jigawa state) in 2017.

Evaluated from estimates of population-weighted prevalence for 
areas with the highest and lowest estimated prevalence of stunting 
(ninetieth and tenth percentiles, respectively), locations in central 
Chad, Pakistan, and Afghanistan, in northeastern Angola, and through-
out the Democratic Republic of the Congo and Madagascar had among 
the lowest annualized rates of change (AROC), indicating stagnation or 
increase over the study period (Fig. 1c); in 2017, these countries also had 
large geographical areas among the most highly prevalent for stunting. 
By contrast, areas scattered throughout Peru, northwestern Mexico, 
and eastern Nepal had among the highest stunting levels in 2000, but 
also the highest rates of decline; by 2017, many of these areas were 
subsequently no longer in the highest-prevalence decile.

The absolute number of children under five who were stunted 
was also unequally distributed (Fig. 1e, f), with a large proportion 

concentrated in a few nations in 2017; overall, 85.1% (84.4–85.7%)  
of all stunted children under five lived in Africa or Asia. Of the  
176.1 million (151.6–203.3 million) children who were stunted in 2017, 
just over half (50.1% (48.5–52.0%)) lived in only four countries: India 
(51.5 million (47.7–55.3 million) children; 28.6% (27.1–30.4%) of global 
stunting), Pakistan (10.7 million (9.3–12.1 million); 6.8% (6.7–6.9%)), 
Nigeria (11.8 million (10.7–13.0 million); 6.6% (6.4–6.8%)), and China 
(16.2 million (14.0–18.5 million); 9.0% (9.1–8.9%)). Although China 
had a low prevalence of national stunting (10.8% (9.1–12.6%)) in 
2017, the prevalence was high in India (39.3% (39.1–39.6%)), Pakistan  
(44.0% (38.4–49.9%)), and Nigeria (38.2% (34.5–42.0%)). Even with mod-
erate levels of stunting (10 to <20%)10, these highly populous coun-
tries would substantially contribute to the global share owing to their 
population size, and reducing their levels would markedly decrease 
the number of stunted children.

Childhood wasting was less widespread than stunting (Fig. 2a, b), 
affecting 8.4% (7.9–9.9%) of children under five in LMICs in 2000, and 
6.4% (4.9–7.9%) by 2017. Wasting reached critical levels (at least 15%)11 
nationally in 13 LMICs in 2000 and 7 LMICs in 2017, although only 
in Mauritania (20.7% (16.5–25.6%)) did all units exceed these levels 
(Extended Data Fig. 3). Critical wasting prevalence was concentrated in 
few areas across the globe in 2017, including the peri-Sahelian areas of 
countries stretching from Mauritania to Sudan, as well as areas in South 
Sudan, Ethiopia, Kenya, Somalia, Yemen, India, Pakistan, Bhutan, and 
Indonesia. Most LMICs reduced within-country disparities between 
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Fig. 1 | Prevalence of stunting in children under five in LMICs (2000–2017) 
and progress towards 2025. a, b, Prevalence of stunting in children under five 
at the 5 × 5-km resolution in 2000 (a) and 2017 (b). c, Overlapping population-
weighted tenth and ninetieth percentiles (lowest and highest) of 5 × 5-km grid 
cells and AROC in stunting, 2000–2017. d, Overlapping population-weighted 
quartiles of stunting prevalence and relative 95% uncertainty in 2017.  

e, f, Number of children under five who were stunted, at the 5 × 5-km (e) and 
first-administrative-unit (f) levels. g, 2000–2017 annualized decrease in 
stunting prevalence relative to rates needed during 2017–2025 to meet the 
WHO GNT. h, Grid-cell-level predicted stunting prevalence in 2025. Maps were 
produced using ArcGIS Desktop 10.6. Interactive visualization tools are 
available at https://vizhub.healthdata.org/lbd/cgf.
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their highest- and lowest-prevalence units between 2000 and 2017, 
most notably in Algeria, Uzbekistan, and Egypt (Extended Data Fig. 4). 
Even against a backdrop of national-level declines, however, broad 
within-country disparities in wasting remained in countries such as 
Indonesia, Ethiopia, Nigeria, and Kenya. An estimated ninefold dif-
ference in wasting prevalence occurred among Kenya’s units in 2017, 
ranging from 2.9% (1.6–4.9%) in Tetu constituency (Nyeri county) to 
28.3% (20.2–37.3%) in Turkana East constituency (Turkana county); 
higher-resolution estimates reveal areas with a wasting prevalence of 
at least 25%. High-prevalence areas in 2000 typically remained within 
the highest population-weighted decile for wasting in 2017, including 
the units of Rabkona county (Unity state) in northern South Sudan 
(27.8% (19.8–37.6%) in 2000; 17.3% (8.8–21.9%) in 2017), the Tanout 
department (Zinder region) in southern Niger (21.6% (17.3–26.7%)  
in 2000; 16.5% (11.3–23.3%) in 2017), and Alor regency (Nusa Tenggara 
Timur province) in southeastern Indonesia (16.4% (9.6–25.8%) in 2000; 
20.7% (12.8–30.3%) in 2017) (Fig. 2c).

The absolute number of children affected by wasting was unequal 
both across and within countries (Fig. 2e, f). Of the 58.3 million (47.6–
70.7 million) children affected by wasting in 2017, 57.1% (52.7–61.6%) 
occurred in four of the most populous countries: India (26.1 million 
(23.1–29.0 million); 44.7% (41.0–48.6%) of global wasting), Pakistan 
(3.5 million (2.8–4.3 million); 6.0% (5.8–6.1%)), Bangladesh (1.8 mil-
lion (1.2–2.4 million); 3.0% (2.6–3.4%)), and Indonesia (2.0 million  
(1.7–2.3 million); 3.4% (3.3–3.5%)). On the basis of standard thresholds11, 

these countries had serious levels of national wasting prevalence  
(10 to <15%), ranging from 12.2% (9.7–14.9%) in Pakistan to 15.7% (15.5–
15.9%) in India, and all but Bangladesh had areas with estimated wasting 
levels above 20%; increased efforts, especially in densely populated 
areas with high prevalence and absolute numbers, could immensely 
reduce global child wasting.

The prevalence of underweight—a composite indicator of stunting 
and wasting—followed the scattered pattern of high-stunting areas in 
SSA and spanning Central Asia to Oceania, and the high prevalence belt 
of wasting along the African Sahel (Extended Data Fig. 5a, b). Affecting 
19.8% (17.3–22.7%) of children under five across LMICs in 2000 and 
13.0% (10.4–16.0%) in 2017, reductions in underweight prevalence were 
most notable for countries in Central and South America, southern 
SSA, North Africa, and Southeast Asia. For example, by 2017, estimated 
underweight prevalence had decreased to less than or equal to 20% 
for nearly all areas in Namibia. By contrast, peri-Sahelian countries 
stretching from Mauritania to Somalia maintained an estimated under-
weight prevalence of at least 30% in many areas. Large geographical 
areas across Central and South Asia also maintained high prevalence 
of underweight during the study period; in particular, India, Pakistan, 
and Bangladesh sustained estimated prevalence of at least 30% in most 
locations. Although levels of child underweight had largely reduced 
since 2000, within-country disparities remained widespread; 71.4%  
(75 out of 105) of LMICs experienced at least a twofold difference across 
units in 2017 (Extended Data Fig. 6).
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Fig. 2 | Prevalence of wasting in children under five in LMICs (2000–2017) 
and progress towards 2025. a, b, Prevalence of child wasting in children under 
five at the 5 × 5-km resolution in 2000 (a) and 2017 (b). c, Overlapping 
population-weighted tenth and ninetieth percentiles (lowest and highest) of 
5 × 5-km grid cells and AROC in wasting, 2000–2017. d, Overlapping 
population-weighted quartiles of wasting prevalence and relative 95% 

uncertainty in 2017. e, f, Number of children under five affected by wasting, at 
the 5 × 5-km (e) and first-administrative-unit (f) levels. g, 2000–2017 annualized 
decrease in wasting prevalence relative to rates needed during 2017–2025 to 
meet the WHO GNT. h, Grid-cell-level predicted wasting prevalence in 2025. 
Maps were produced using ArcGIS Desktop 10.6. Interactive visualization tools 
are available at https://vizhub.healthdata.org/lbd/cgf.
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Prospects for reaching 2025 targets
We estimate that broad areas across Central America and the Caribbean, 
South America, North Africa, and East Asia had high probability (>95%) 
of having already achieved targets for both stunting and wasting in 
2017 (Extended Data Fig. 7). Exceptions to these regional patterns exist; 
areas with stagnated progress and less than 50% probability of having 
achieved the World Health Organization’s Global Nutrition Targets 
for 2025 (WHO GNTs) in 2017 were found throughout much of Gua-
temala and Ecuador for stunting and in southern Venezuela for wast-
ing (Figs. 1g, 2g, Extended Data Fig. 7). Even within countries that had 
achieved targets, there remain areas with slow progress; locations in 
central Peru for stunting and southwestern South Africa for wasting 
had not achieved targets in 2017 (less than 5% probability)—nuances 
otherwise hidden by aggregated estimates. Owing to stagnation or 
increases in prevalence, broad areas in SSA and substantial portions 
across Central Asia, South Asia, and Oceania (for example, in the Demo-
cratic Republic of the Congo and Pakistan for stunting; in Yemen and 
Indonesia for wasting) require reversal of trends or acceleration of 
declines in order to meet international targets (Figs. 1g, 2g).

Despite predicted improvements in AROC for 2017–2025, many 
highly affected countries are predicted to have areas that maintain 
estimated stunting levels of at least 40% or wasting levels of at least 
15% in 2025 (Figs. 1h, 2h). Accounting for uncertainty in 2000–2017 
AROC estimates, and with 2010 national-level estimates as a baseline 
for the 40% stunting reduction target, 44.8% (47 out of 105) of LMICs 
are estimated to nationally meet WHO GNT (>95% probability) for stunt-
ing by 2025 (Supplementary Table 13). At finer scales, 17.1% (n = 18) 
and 7.6% (n = 8) of LMICs will meet the stunting target in all first and 
second administrative-level units in 2025, respectively (Extended Data 
Fig. 8a, d, Supplementary Table 13). Similarly, 35.2% (n = 37) of LMICs are 
estimated to reduce to or maintain less than 5% wasting prevalence by 
2025 (>95% probability) based on current trajectories (Supplementary 
Table 13). Fewer countries were estimated to meet wasting targets in all 
first administrative-level (16.2% (n = 17)) or second administrative-level 
(9.5% (n = 10)) units (Extended Data Fig. 8b, e, Supplementary Table 13). 
Only 26.7% (n = 28) of LMICs will meet national-level targets for both 
stunting and wasting by 2025, and only 4.8% (n = 5) will achieve both 
targets in all units (Supplementary Table 13).

Discussion
Although commendable declines in CGF have occurred globally, this 
progress measured at a coarse scale conceals subnational and local 
underachievement and variation in achieving the WHO GNTs. Sup-
porting conclusions in the Global Nutrition Report12, our results show 
that most LMICs will not reach WHO GNTs nationally, and even fewer 
will meet targets across subnational units. Our mapped results show 
broad heterogeneity across areas, and reveal hotspots of persistent CGF 
even within well-performing regions and countries, where increased 
and targeted efforts are needed. In 2017, one in four children under 
five across LMICs still suffered at least one dimension of CGF, and the 
largest numbers of affected children were often in specific within-
country locations. Although the national prevalence of CGF was gener-
ally lower in Central America and the Caribbean, South American, and 
East Asian countries, there are communities in these regions in which 
levels of CGF remain as high as those in SSA and South Asia. Regardless 
of overall declines, many subnational areas across LMICs maintained 
high levels of CGF and require substantial acceleration of progress or 
reversal of increasing trends to meet nutrition targets and leave no 
populations behind.

To our knowledge, this study is the first to estimate CGF compre-
hensively across LMICs at a fine geospatial scale, providing a precision 
public health tool to support efficient targeting of local-level interven-
tions to vulnerable populations. Although densely populated areas 
may have relatively low prevalence of CGF, the absolute number of 
affected children may still be high; thus, both relative and absolute 
estimates are important to determine where additional attention is 
needed. To achieve international goals, more concerted efforts are 
needed in areas with decreasing or stagnating trends, without dimin-
ishing support in areas that demonstrate progress nor contributing to 
increases in obesity. In future work, we plan to determine how to stratify 
our estimates of CGF by sex and age, assess the double burden of child 
undernutrition and overweight, analyse important maternal indicators 
that affect child nutritional status outcomes (such as anaemia), and 
continue to monitor progress towards the 2025 WHO GNTs. These 
mapped estimates enable decision-makers to visualize and compare 
subnational CGF and nutritional inequalities, and identify populations 
most in need of interventions13.
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Methods

Overview
Building from our previous study of CGF in Africa9, we used Bayesian 
model-based geostatistics14—which leveraged geo-referenced sur-
vey data and environmental and socioeconomic covariates, and the 
assumption that points with similar covariate patterns and that are 
closer to one another in space and time would be expected to have 
similar patterns of CGF—to produce high-spatial-resolution estimates 
of the prevalence of stunting, wasting, and underweight among chil-
dren under five across LMICs. Stunting, wasting, and underweight were 
defined as z-scores that were two or more standard deviations below 
the WHO healthy population reference median for length/height-for-
age, weight-for-length/height, and weight-for-age, respectively, for 
age- and sex-specific curves6. Using an ensemble modelling framework 
that feeds into a Bayesian generalized linear model with a correlated 
space–time error, and 1,000 draws from the fitted posterior distribu-
tion, we generated estimates of annual prevalence for each indicator of 
CGF on a 5 × 5-km grid over 105 LMICs for each year from 2000 to 2017 
and mapped results at administrative levels to provide relevant sub-
national information for policy planning and public health action. For 
this analysis, we compiled an extensive geo-positioned dataset, using 
data from 460 household surveys and reports representing 4.6 mil-
lion children. To ensure comparability with national estimates and to 
facilitate benchmarking, these local-level estimates were calibrated 
to those produced by the Global Burden of Disease (GBD) Study 20171, 
and were subsequently aggregated to the first administrative level (for 
example, states or provinces) and second administrative level (for 
example, districts or departments) in each LMIC. We also predict CGF 
prevalence for 2025 based on 2000–2017 trajectories and estimate 
the AROC required to meet the WHO GNTs by 2025. In addition, we 
estimate the 2017 absolute numbers of children under five affected by 
each CGF indicator in LMICs based on our prevalence estimates and 
the size of the populations of children under five15,16. Furthermore, we 
provide figures that demonstrate subnational disparities between each 
country’s second administrative-level units with the highest and lowest 
estimated prevalence for 2000 and 2017 (Extended Data Figs. 2, 4, 6). 
We re-estimate CGF prevalence for the 51 African countries included 
in our previous analysis9 using 28 additional surveys, and extend time 
trends to model each year from 2000 to 2017. Owing to these improve-
ments in data availability and methodology, the estimates provided 
here supersede our previous modelling efforts.

Countries were selected for inclusion in this study using the socio-
demographic index (SDI)—a summary measure of development that 
combines education, fertility, and poverty, published in the GBD study1. 
The analyses reported here include countries in the low, low-middle, 
and middle SDI quintiles, with several exceptions (Supplementary 
Table 3). China, Iran, Libya, and Malaysia were included despite high-
middle SDI status in order to create better geographical continuity. 
Albania and Moldova were excluded owing to geographical disconti-
nuity with other included countries and lack of available survey data. 
We did not estimate for the island nations of American Samoa, Feder-
ated States of Micronesia, Fiji, Kiribati, Marshall Islands, North Korea, 
Samoa, Solomon Islands, or Tonga, where no available survey data 
could be sourced. The flowchart of our modelling process is provided 
in Extended Data Fig. 9.

Surveys and child anthropometry data
We extracted individual-level height, weight, and age data for children 
under five from household survey series including the Demographic 
and Health Surveys (DHS), Multiple Indicator Cluster Surveys (MICS), 
Living Standards Measurement Study (LSMS), and Core Welfare Indica-
tors Questionnaire (CWIQ), among other country-specific child health 
and nutrition surveys7,17–19 (Supplementary Tables 4, 5). Included in our 
models were 460 geo-referenced household surveys and reports from 

105 countries representing approximately 4.6 million children under 
five. Each individual child record was associated with a cluster, a group 
of neighbouring households or a ‘village’ that acts as a primary sampling 
unit. Some surveys included geographical coordinates or precise place 
names for each cluster within that survey (138,938 clusters for stunt-
ing, 144,460 for wasting, and 147,624 for underweight). In the absence 
of geographical coordinates for each cluster, we assigned data to the 
smallest available administrative areal unit in the survey (termed a ‘poly-
gon’) while correcting for the survey sample design (16,554 polygons 
for stunting, 18,833 for wasting, and 19,564 for underweight). Boundary 
information for these administrative units was obtained as shapefiles 
either directly from the surveys or by matching to shapefiles in the 
Global Administrative Unit Layers (GAUL)20 or the Database of Global 
Administrative Areas (GADM)21. In select cases, shapefiles provided by 
the survey administrator were used, or custom shapefiles were created 
based on survey documentation. These areal data were resampled to 
point locations using a population-weighted sampling approach over 
the relevant areal unit with the number of locations set proportionally 
to the number of grid cells in the area and the total weights of all the 
resampled points summing to one16.

Select data sources were excluded for the following reasons: miss-
ing survey weights for areal data, missing sex variable, insufficient 
age granularity (in months) for calculations of length/height-for-age 
z-scores and weight-for-age z-scores in children ages 0–2 years, incom-
plete sampling (for example, only children ages 0–3 years measured), 
or untrustworthy data (as determined by the survey administrator 
or by inspection). We excluded data for children for whom we could 
not compute age in both months and weeks. Children with height val-
ues ≤0 cm or ≥180 cm, and/or with weight values ≤0 kg or ≥45 kg were 
also excluded from the study. We also excluded data that were con-
sidered outliers according to the 2006 WHO Child Growth Standards 
recommended range values, which were values <−6 or >6 length/height-
for-age z-score for stunting, <−5 or >5 weight-for-length/height z-score 
for wasting, and <−6 or >5 weight-for-age z-score for underweight3,4. 
Details on the survey data excluded for each country are provided in 
Supplementary Table 6. Data availability plots for all the CGF indicators 
by country, type, and year are included in Supplementary Figs. 2–16.

Child anthropometry
Using the height, weight, age, and sex data for each individual, height-
for-age, weight-for-height, and weight-for-age z-scores were calculated 
using the age-, sex-, and indicator-specific LMS (lambda-mu-sigma) 
values from the 2006 WHO Child Growth Standards3,4. The LMS meth-
odology allows for Gaussian z-score calculations and comparisons 
to be applied to skewed, non-Gaussian distributions22. We classified 
stunting, wasting, or underweight if the height/length-for-age, weight-
for-height/length, or weight-for-age, respectively, was more than two 
standard deviations (z-scores) below the WHO growth reference popu-
lation6. These individual-level data observations were then collapsed to 
cluster-level totals for the number of children sampled and total num-
ber of children under five affected by stunting, wasting, or underweight.

Temporal resolution
We estimated the prevalence of stunting, wasting, and underweight 
annually from 2000 to 2017 using a model that allows us to account for 
data points measured across survey years. As such, the model would 
also allow us to predict at monthly or finer temporal resolutions; how-
ever, we are limited both computationally and by the temporal resolu-
tion of the covariates.

Seasonality adjustment
Owing to the acute nature of wasting and its relative temporal transi-
ence, wasting data were pre-processed to account for seasonality within 
each year of observation. Across LMICs, large proportions of the popu-
lation live in rural areas and have livelihoods that rely on agriculture 



and livestock. Seasonality affects the availability of and access to food, 
sometimes owing to natural disasters or climate events (for example, 
floods, monsoons, or droughts) that vary by season. Generalized addi-
tive models were fit to wasting data across time using the month of 
interview and a country-level fixed effect as the explanatory variables, 
and the wasting z-score as the response. A 12-month periodic spline for 
the interview month was used, as well as a spline that smoothed across 
the whole duration of the dataset. Once the models were fit, individual 
weight-for-height/length z-score observations were adjusted so that 
each measurement was consistent with a day that represented a mean 
day in the periodic spline. The seasonality adjustment had relatively 
little effect on the raw data9.

Spatial covariates
To leverage strength from locations with observations to the entire 
spatiotemporal domain, we compiled several 5 × 5-km raster layers of 
possible socioeconomic and environmental correlates of CGF in the 
105 LMICs (Supplementary Table 7, Supplementary Fig. 17). Covariates 
were selected based on their potential to be predictive for the set of 
CGF indicators, after reviewing literature on evidence and plausible 
hypotheses as to their influence. Acquisition of temporally dynamic 
datasets, where possible, was prioritized to best match our observa-
tions and thus predict the changing dynamics of the CGF indicators. 
Of the twelve covariates included, eight were temporally dynamic and 
were reformatted as a synoptic mean over each estimation period 
or as a mid-period year estimate: these covariates included average 
daily mean rainfall (precipitation), average daily mean temperature, 
enhanced vegetation index, fertility, malaria incidence, educational 
attainment in women of reproductive age (15–49 years old), popula-
tion, and urbanicity. The remaining four covariate layers were static 
throughout the study period and were applied uniformly across all 
modelling years; growing season length, irrigation, nutritional yield for 
vitamin A, and travel time to nearest settlement of >50,000 inhabitants.

To select covariates and capture possible nonlinear effects and com-
plex interactions between them, an ensemble covariate modelling 
method was implemented23. For each region, three sub-models were 
fit to our dataset using all of our covariate data as explanatory predic-
tors; these sub-models were: generalized additive models, boosted 
regression trees, and lasso regression. Each sub-model was fit using 
fivefold cross-validation to avoid overfitting, and the out-of-sample 
predictions from across the five holdouts were compiled into a single 
comprehensive set of predictions from that model. In addition, the 
same sub-models were run using 100% of the data, and a full set of 
in-sample predictions were created. The three sets of out-of-sample 
sub-model predictions were fed into the full geostatistical model14 as 
the explanatory covariates when performing the model fit. The in-
sample predictions from the sub-models were used as the covariates 
when generating predictions using the fitted full geostatistical model. 
A recent study demonstrated that this ensemble approach can improve 
predictive validity by up to 25% over an individual model23.

Geostatistical model analysis
Binomial count data were modelled within a Bayesian hierarchical 
modelling framework using a logit link function and a spatially and 
temporally explicit hierarchical generalized linear regression model to 
fit prevalence of each of our indicators in 14 regions24 of LMICs (North 
Africa, western SSA, central SSA, eastern SSA, southern SSA, Middle 
East, Central Asia, East Asia, South Asia, Southeast Asia, Oceania, Cen-
tral America and the Caribbean, Andean South America, and Tropical 
South America; see Extended Data Fig. 10). For each region, we explicitly 
wrote the hierarchy that defines our Bayesian model.

For each binomial CGF indicator, we modelled the average number 
of children with stunting, wasting, or who were underweight in each 
survey cluster, d. Survey clusters are precisely located by their GPS 
coordinates and year of observation, which we map to a spatial raster 

location, i, at time, t. We observed the number of children reported to 
be stunted, wasted, or underweight, respectively, as binomial count 
data, Cd, among an observed sample size, Nd. As we may have observed 
several data clusters within a given location, i, at time, t, we refer to 
the probability of stunting, wasting, or underweight, p, within a given 
cluster, d, by its indexed location, i, and time, t, as pi(d),t(d).
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For indices d, i, and t, *(index) is the value of * at that index. The prob-
abilities, pi,t, represent both the annual prevalence at the space–time 
location and the probability that an individual child was afflicted with 
the risk factor given that they lived at that particular location. The 
annual prevalence, pi,t, of each indicator was modelled as a linear com-
bination of the three sub-models (generalized additive model, boosted 
regression trees, and lasso regression), rasterized covariate values, Xi,t, 
a correlated spatiotemporal error term, Zi,t, and country random effects, 
ϵctr(i), with one unstructured country random effect fit for each country 
in the modelling region and all ϵctr sharing a common variance param-
eter, γ2, and an independent nugget effect, ϵi,t, with variance parameter, 
σ2. Coefficients in βh in the three sub-models h = 1, 2, 3 represent their 
respective predictive weighting in the mean logit link, while the joint 
error term, Zi,t, accounts for residual spatiotemporal autocorrelation 
between individual data points that remains after accounting for the 
predictive effect of the sub-model covariates, the country-level random 
effect, ϵctr(i), and the nugget independent error term, ϵi,t. The residuals, 
Zi,t, are modelled as a three-dimensional Gaussian process (GP) in space–
time centred at zero and with a covariance matrix constructed from a 
Kronecker product of spatial and temporal covariance kernels. The 
spatial covariance, Σspace, is modelled using an isotropic and stationary 
Matérn function25, and temporal covariance, Σtime, as an annual autore-
gressive (AR1) function over the 18 years represented in the model. In 
the stationary Matérn function, Γ is the gamma function, Κv is the 
modified Bessel function of order v > 0, κ > 0 is a scaling parameter,  
D denotes the Euclidean distance, and ω2 is the marginal variance. The 
scaling parameter, κ, is defined to be κ v δ= 8 /  in which δ is a range 
parameter (which is about the distance where the covariance function 
approaches 0.1) and v is a scaling constant, which is set to 2 rather than 
fit from the data26,27. This parameter is difficult to reliably fit, as docu-
mented by many other analyses26,28,29 that set this to 2. The number of 
rows and the number of columns of the spatial Matérn covariance matrix 
are both equal to the number of spatial mesh points for a given model-
ling region. In the AR1 function, ρ is the autocorrelation function (ACF), 
and k and j are points in the time series where |k − j| defines the lag. The 
number of rows and the number of columns of the AR1 covariance matrix 
are both equal to the number of temporal mesh points (18). The number 
of rows and the number of columns of the  space–time covariance 
matrix, Σspace ⊗ Σtime, for a given modelling region are both equal to: (the 
number of spatial mesh points × the number of temporal mesh points).
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This approach leveraged the residual correlation structure of the 

data to more accurately predict prevalence estimates for locations with 
no data, while also propagating the dependence in the data through 
to uncertainty estimates14. The posterior distributions were fit using 
computationally efficient and accurate approximations in R-INLA30,31 
(integrated nested Laplace approximation) with the stochastic partial 
differential equations (SPDE)27 approximation to the Gaussian pro-
cess residuals using R project v.3.5.1. The SPDE approach using INLA 
has been demonstrated elsewhere, including the estimation of health 
indicators, particulate air matter, and population age structure9,32–35. 
Uncertainty intervals were generated from 1,000 draws (that is, sta-
tistically plausible candidate maps)36 created from the posterior-esti-
mated distributions of modelled parameters. Further details on model  
and estimation processes are provided in the Supplementary Infor-
mation.

Post estimation
To leverage national-level data included in the 2017 GBD study1 that 
were not within the scope of our current geospatial modelling frame-
work, and to ensure alignment between these estimates and GBD 
national-level and subnational estimates, we performed a post hoc 
calibration to the mean of the 1,000 draws. We calculated popula-
tion-weighted aggregations to the GBD estimate level, which was 
either at the national or first administrative level, and compared 
these estimates to our corresponding year estimates from 2000 to 
2017. We defined the calibration factor to be the ratio between the 
GBD estimates and our current estimates for each year from 2000 to 
2017. For some selected countries where GBD estimates were at the 
first administrative level, the calibration factors were also calculated 
at the lowest available subnational level. These countries included 
Brazil, China, Ethiopia, India, Indonesia, Iran, Mexico, and South 
Africa. Finally, we multiplied each of our estimates in a country-year 
(or first-administrative-year) by its associated factor. This ensures 
consistency between our geospatial estimates and those of the 2017 
GBD1, while preserving our estimated within-country geospatial and 
temporal variation. To transform grid-cell-level estimates into a range 
of information useful to a wide constituency of potential users, these 
estimates were aggregated at first and second administrative-level 
units specific to each country and at national levels using conditional 
simulation37.

Although the models can predict all locations covered by available 
raster covariates, all final model outputs for which land cover was clas-
sified as ‘barren or sparsely vegetated’ on the basis of the most recently 
available Moderate Resolution Imaging Spectroradiometer (MODIS) 
satellite data (2013) were masked38. Areas where the total population 
density was less than ten individuals per 1 × 1-km grid cell were also 
masked in the final outputs.

Model validation
We assessed the predictive performance of the models using fivefold 
out-of-sample cross-validation strategies and found that our preva-
lence estimates closely matched the survey data. To offer a more 
stringent analysis by respecting some of the spatial correlation in the 
data, holdout sets were created by combining sets of data at different 
spatial resolutions (for example, first administrative level). Validation 
was performed by calculating bias (mean error), variance (root mean 
square error), 95% data coverage within prediction intervals, and cor-
relation between observed data and predictions. All validation metrics 
were calculated on the out-of-sample predictions from the fivefold 
cross-validation. Furthermore, measures of spatial and temporal auto-
correlation pre- and post-modelling were examined to verify correct 
recognition, fitting, and accounting for the complex spatiotemporal 
correlation structure in the data. All validation procedures and cor-
responding results are included in Supplementary Tables 14–22 and 
Supplementary Figs. 24–41.

Projections
To compare our estimated rates of improvement in CGF prevalence 
over the last 18 years with the improvements needed between 2017 
and 2025 to meet WHO GNTs, we performed a simple projection using 
estimated annualized rates of change (AROC) applied to the final year 
of our estimates.

For each CGF indicator, u, we calculated AROC at each grid cell, m, by 
calculating the AROC between each pair of adjacent years, t:
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We then calculated a weighted AROC for each indicator by taking 
a weighted average across the years, where more recent AROCs were 
given more weight in the average. We defined the weights to be:

W t= ( − 2000 + 1)t
γ

in which γ may be chosen to give varying amounts of weight across the 
years. For any indicator, we then calculated the average AROC to be:
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Finally, we calculated the projections, Proj, by applying the AROC in 
our 2017 mean prevalence estimates to produce estimates in 8 years 
from 2017 to 2025. For this set of projections, we selected γ = 1.7 for 
stunting, γ = 1.9 for wasting, and γ = 1.8 for underweight1.

pProj = logit (logit( ) + AROC × 8)u m u m u m, ,2025
−1

, ,2017 ,

This projection scheme is analogous to the methods used in the 2017 
GBD measurement of progress and projected attainment of health-
related Sustainable Development Goals1. Our projections are based 
on the assumption that areas will sustain the current AROC, and the 
precision is dependent on the level of uncertainty emanating from the 
estimation of annual prevalence.

Although the WHO GNT for wasting was to reduce prevalence to 
less than 5%, the WHO GNT for stunting was a 40% relative reduction 
in prevalence. For our analyses, we defined the WHO GNT for stunt-
ing and underweight (for which no WHO GNT was established) to be 
40% reduction relative to 2010, the year the World Health Assembly 
requested the development of the WHO GNTs39.

Limitations
The accuracy of our models depends on the volume, representative-
ness, quality, and validity of surveys available for analysis (Supple-
mentary Tables 4, 5, Supplementary Figs. 2–16). Persistent data gaps 
in national surveys include a lack of CGF data or household-level char-
acteristics, such as hygiene and sanitation practices. The associated 
uncertainties of our estimates are higher in areas where data are either 
missing or less reliable (Figs. 1d, 2d, Extended Data Fig. 5d), and rely 
more heavily on covariates and borrowing from neighbouring areas for 
their modelling (Supplementary Table 7, Supplementary Fig. 17). Invest-
ments in improvements of health surveillance systems and including 
child anthropometrics as part of routine data collection for profiling 
population characteristics could improve the certainty of our estimates 
and better monitor progress towards international goals. In addition, 
measurement error in collecting anthropometric information, includ-
ing the child’s age, height, and weight, could have introduced bias or 
error in the data across different survey types. The accuracy of age 
data may be affected by differences in sampling approaches and self-
reporting bias, such as long recall period or selective recall. Weight and 
height measurements may be inaccurate owing to improper calibration 



of equipment, device inaccuracy, different measurement methods, or 
human error. We did not include a survey random effect to account for 
between-survey variability in data accuracy; given that most surveys 
represent a country-year, it would be difficult to distinguish these biases 
from temporal effects. Our calibration approach in the post-estimation 
process used only a ratio estimator and did not account for an additive 
effect, which may have introduced bias. Owing to the complexity of the 
boosted regression tree sub-model, we were unable to account for the 
uncertainty of our three sub-models in our final estimates (see Supple-
mentary Information section 3.2.2 for more detail). It is worth noting 
that our analyses are descriptive and do not support causal inferences 
on their own. Future research is required to determine the causal path-
ways for each CGF indicator across and within LMICs.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
CGF estimates can be further explored at various spatial scales 
(national, administrative, and local levels) through our customized 
online data visualization tools (https://vizhub.healthdata.org/lbd/
cgf). The full output of the analyses and the underlying data used in 
the analyses are publicly available via the Global Health Data Exchange 
(GHDx; http://ghdx.healthdata.org/record/ihme-data/lmic-child-
growth-failure-geospatial-estimates-2000-2017). Some data sources 
are under special licenses for the current study and are thus not publicly 
available. Supplementary Tables 4 and 5 show the incorporated data 
sources, and data with restrictions are marked with an obelisk symbol 
(†). All maps presented in this study are generated by the authors and 
no permissions are required to publish them.

The findings of this study are supported by data available in public 
online repositories, data publicly available upon request of the data pro-
vider, and data not publicly available owing to restrictions by the data 
provider. Non-publicly available data were used under license for the 
current study but may be available from the authors upon reasonable 
request and with permission of the data provider. Detailed tables and 
figures of data sources and availability can be found in Supplementary 
Tables 4, 5, and Supplementary Figs. 2–16.

Administrative boundaries were retrieved from the Global Admin-
istrative Unit Layers (GAUL)20 or the Database of Global Administra-
tive Areas (GADM)21. Land cover was retrieved from the online Data 
Pool, courtesy of the NASA EOSDIS Land Processes Distributed Active 
Archive Center (LP DAAC), USGS/Earth Resources Observation and Sci-
ence (EROS) Center, Sioux Falls, South Dakota40. Lakes were retrieved 
from the Global Lakes and Wetlands Database (GLWD), courtesy of 
the World Wildlife Fund and the Center for Environmental Systems 
Research, University of Kassel41,42. Populations were retrieved from 
WorldPop15,16. All maps in this study were produced using ArcGIS 
Desktop 10.6.

Code availability
Our study follows the Guidelines for Accurate and Transparent Health 
Estimate Reporting (GATHER; Supplementary Table 1). All code used 
for these analyses is publicly available online http://ghdx.healthdata.
org/record/ihme-data/lmic-child-growth-failure-geospatial-estimates- 
2000-2017 and at http://github.com/ihmeuw/lbd/tree/cgf-lmic-2019.
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Extended Data Fig. 1 | Prevalence of stunting in children under five in LMICs 
at administrative levels 0, 1, 2, and at 5 × 5-km resolution in 2017. 
Administrative level 0 are national-level estimates; administrative level 1 are 
first administrative-level (for example, states or provinces) estimates; 
administrative level 2 are second administrative-level (for example, districts or 

departments) estimates. Maps reflect administrative boundaries,  
land cover, lakes, and population; grey-coloured grid cells had fewer than ten 
people per 1 × 1-km grid cell and were classified as ‘barren or sparsely 
vegetated’15,16,20,21,40–42, or were not included in these analyses. Maps were 
produced using ArcGIS Desktop 10.6.



Extended Data Fig. 2 | Geographical inequality in the prevalence of child 
stunting across 105 countries. The bars represent the range of stunting 
prevalence in children under five in the second administrative-level units in 

each country. Bars indicating the range in 2017 are coloured according to the 
regions defined by the Global Burden of Disease (GBD)1. Grey bars indicate the 
range in 2000. The graph was produced using R project v.3.5.1.
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Extended Data Fig. 3 | Prevalence of wasting in children under five in LMICs 
at administrative levels 0, 1, 2, and at 5 × 5-km resolution in 2017. 
Administrative levels are as described in Extended Data Fig. 1. Maps reflect 
administrative boundaries, land cover, lakes, and population; grey-coloured 

grid cells had fewer than ten people per 1 × 1-km grid cell and were classified as 
‘barren or sparsely vegetated’15,16,20,21,40–42, or were not included in these 
analyses. Maps were produced using ArcGIS Desktop 10.6.



Extended Data Fig. 4 | Geographical inequality in prevalence of child 
wasting across 105 countries. The bars represent the range of wasting 
prevalence in children under five in the second administrative-level units in 

each country. Bars indicating the range in 2017 are coloured according to their 
GBD-defined1 regions. Grey bars indicate the range in 2000. The graph was 
produced using R project v.3.5.1.
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Extended Data Fig. 5 | Prevalence of underweight in children under five in 
LMICs (2000–2017) and progress towards 2025. a, b, Prevalence of 
underweight in children under five at the 5 × 5-km resolution in 2000 (a) and 
2017 (b). c, Overlapping population-weighted tenth and ninetieth percentiles 
(lowest and highest) of 5 × 5-km grid cells and AROC in underweight, 2000–
2017. d, Overlapping population-weighted quartiles of underweight 
prevalence and relative 95% uncertainty in 2017. e, f, Number of underweight 

children under five, at the 5 × 5-km (e) and first-administrative-unit (f) levels.  
g, 2000–2017 annualized decrease in underweight prevalence relative to rates 
needed during 2017–2025 to meet WHO GNT. h, Grid-cell-level predicted 
underweight prevalence in 2025. Maps were produced using ArcGIS Desktop 
10.6. Interactive visualization tools are available at https://vizhub.healthdata.
org/lbd/cgf.

https://vizhub.healthdata.org/lbd/cgf
https://vizhub.healthdata.org/lbd/cgf


Extended Data Fig. 6 | Geographical inequality in prevalence of child 
underweight across 105 countries. The bars represent the range of 
underweight prevalence in the second administrative-level units in each 

country. Bars indicating the range in 2017 are coloured according to their GBD-
defined1 regions. Grey bars indicate the range in 2000. The graph was 
produced using R project v.3.5.1.
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Extended Data Fig. 7 | Probability that WHO GNT had been achieved in 2017 
at the first administrative and 5 × 5-km grid-cell levels for stunting, wasting, 
and underweight. a–f, Probability of WHO GNT achievement in 2017 at the first 
administrative and 5 × 5-km levels for stunting (a, d), wasting (b, e), and 
underweight (c, f). Dark-blue and dark-red grid cells indicate >95% and <5% 

probability, respectively, of having met the WHO GNT in 2017. Given that there 
was no WHO GNT established for underweight, we based the underweight 
target on WHO GNT for stunting, as the conditions are similarly widespread 
and prevalent. Maps were produced using ArcGIS Desktop 10.6.



Extended Data Fig. 8 | Probability of meeting WHO GNT in 2025 at the first 
administrative and 5 × 5-km grid-cell levels for stunting, wasting, and 
underweight. a–f, Probability of WHO GNT achievement in 2025 at the first 
administrative and 5 × 5-km levels for stunting (a, d), wasting (b, e), and 
underweight (c, f). Dark-blue and dark-red grid cells indicate >95% and <5% 

probability, respectively, of meeting WHO GNT in 2025. Given that there was no 
WHO GNT established for underweight, we based the underweight target on 
WHO GNT for stunting as the conditions are similarly widespread and 
prevalent. Maps were produced using ArcGIS Desktop 10.6.
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Extended Data Fig. 9 | Flowchart of CGF prevalence modelling process. The 
process used to produce CGF prevalence estimates in LMICs involved three 
main parts. In the data-processing steps (green), data were identified, 
extracted, and prepared for use in the models. In the modelling phase (red), we 
used these data and covariates in stacked generalization ensemble models and 

spatiotemporal Gaussian process models for each CGF indicator. In post-
processing (blue), we calibrated the prevalence estimates to match 2017 GBD 
study1 estimates and aggregated the estimates to the first- and second-
administrative-level units in each country.



Extended Data Fig. 10 | Modelling regions. Modelling regions24 were based on 
geographical and SDI regions from the GBD study1, defined as: Andean South 
America, Central America and the Caribbean, central SSA, East Asia, eastern 
SSA, Middle East, North Africa, Oceania, Southeast Asia, South Asia, southern 

SSA, Central Asia, Tropical South America, and western SSA. ‘High income 
country’ refers to regions not included in our models owing to high-middle or a 
high SDI. The map was produced using ArcGIS Desktop 10.6.
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