Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Challenges in developing a consensus definition of neonatal sepsis

Abstract

Sepsis remains a leading cause of morbidity and mortality in the neonatal population, and at present, there is no unified definition of neonatal sepsis. Existing consensus sepsis definitions within paediatrics are not suited for use in the NICU and do not address sepsis in the premature population. Many neonatal research and surveillance networks have criteria for the definition of sepsis within their publications though these vary greatly and there is typically a heavy emphasis on microbiological culture. The concept of organ dysfunction as a diagnostic criterion for sepsis is rarely considered in neonatal literature, and it remains unclear how to most accurately screen neonates for organ dysfunction. Accurately defining and screening for sepsis is important for clinical management, health service design and future research. The progress made by the Sepsis-3 group provides a roadmap of how definitions and screening criteria may be developed. Similar initiatives in neonatology are likely to be more challenging and would need to account for the unique presentation of sepsis in term and premature neonates. The outputs of similar consensus work within neonatology should be twofold: a validated definition of neonatal sepsis and screening criteria to identify at-risk patients earlier in their clinical course.

Impact

  • There is currently no consensus definition of neonatal sepsis and the definitions that are currently in use are varied.

  • A consensus definition of neonatal sepsis would benefit clinicians, patients and researchers.

  • Recent progress in adults with publication of Sepsis-3 provides guidance on how a consensus definition and screening criteria for sepsis could be produced in neonatology.

  • We discuss common themes and potential shortcomings in sepsis definitions within neonatology.

  • We highlight the need for a consensus definition of neonatal sepsis and the challenges that this task poses.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Fleischmann-Struzek, C. et al. The global burden of paediatric and neonatal sepsis: a systematic review. Lancet. Respir. Med. 6, 223–230 (2018).

    PubMed  Google Scholar 

  2. 2.

    Vergnano, S., Sharland, M., Kazembe, P., Mwansambo, C. & Heath, P. T. Neonatal sepsis: an international perspective. Arch. Dis. Child. Fetal Neonatal Ed. 90, F220 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Tsai, M.-H. et al. Infectious complications and morbidities after neonatal bloodstream infections: an observational cohort study. Medicine 95, e3078 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Chu, S.-M. et al. Neurological complications after neonatal bacteremia: the clinical characteristics, risk factors, and outcomes. PLoS ONE 9, e105294 (2014).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Simonsen, K. A., Anderson-Berry, A. L., Delair, S. F. & Davies, H. D. Early-onset neonatal sepsis. Clin. Microbiol. Rev. 27, 21–47 (2014).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Bohanon, F. J. et al. Race, income and insurance status affect neonatal sepsis mortality and healthcare resource utilization. Pediatr. Infect. Dis. J. 37, e178–e184 (2018).

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Simon, A. K., Hollander, G. A. & McMichael, A. Evolution of the immune system in humans from infancy to old age. Proc. Biol. Sci. 282, 20143085 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Oza, S., Lawn, J. E., Hogan, D. R., Mathers, C. & Cousens, S. N. Neonatal cause-of-death estimates for the early and late neonatal periods for 194 countries: 2000-2013. Bull. World Health Organ. 93, 19–28 (2015).

    PubMed  Google Scholar 

  9. 9.

    Lee, H. C., Bardach, N. S., Maselli, J. H. & Gonzales, R. Emergency department visits in the neonatal period in the United States. Pediatr. Emerg. Care 30, 315–318 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Millar, K. R., Gloor, J. E., Wellington, N. & Joubert, G. I. Early neonatal presentations to the pediatric emergency department. Pediatr. Emerg. Care 16, 145–150 (2000).

    CAS  PubMed  Google Scholar 

  11. 11.

    Yorita, K. L., Holman, R. C., Sejvar, J. J., Steiner, C. A. & Schonberger, L. B. Infectious disease hospitalizations among infants in the United States. Pediatrics 121, 244–252 (2008).

    PubMed  Google Scholar 

  12. 12.

    Mitha, A. et al. Neonatal infection and 5-year neurodevelopmental outcome of very preterm infants. Pediatrics 132, e372 (2013).

    PubMed  Google Scholar 

  13. 13.

    Wynn, J. L. & Wong, H. R. Pathophysiology and treatment of septic shock in neonates. Clin. Perinatol. 37, 439–479 (2010).

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Melville, J. M. & Moss, T. J. M. The immune consequences of preterm birth. Front. Neurosci. 7, 79 (2013).

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Aggarwal, R., Sarkar, N., Deorari, A. K. & Paul, V. K. Sepsis in the newborn. Indian J. Pediatr. 68, 1143–1147 (2001).

    CAS  PubMed  Google Scholar 

  16. 16.

    Roberto Aufieri, S. P. & Piermichele, Paolillo Multiple organ failure in the newborn. J. Pediatr. Neonatal Individualized Med. 3, 1–8 (2014).

    Google Scholar 

  17. 17.

    Stoll, B. J. et al. Very low birth weight preterm infants with early onset neonatal sepsis: the predominance of gram-negative infections continues in the National Institute of Child Health and Human Development Neonatal Research Network, 2002-2003. Pediatr. Infect. Dis. J. 24, 635–639 (2005).

    PubMed  Google Scholar 

  18. 18.

    Pammi, M. & Weisman, L. E. Late-onset sepsis in preterm infants: update on strategies for therapy and prevention. Expert Rev. Anti-Infect. Ther. 13, 487–504 (2015).

    CAS  PubMed  Google Scholar 

  19. 19.

    Alshaikh, B., Yusuf, K. & Sauve, R. Neurodevelopmental outcomes of very low birth weight infants with neonatal sepsis: systematic review and meta-analysis. J. Perinatol. 33, 558–564 (2013).

    CAS  PubMed  Google Scholar 

  20. 20.

    Kohli-Lynch, M. et al. Neurodevelopmental impairment in children after group B streptococcal disease worldwide: systematic review and meta-analyses. Clin. Infect. Dis. 65, S190–S199 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Glodstein, B., Giroir, B. & Randolph, A. International Pediatric Sepsis Consensus Conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr. Crit. Care Med. 6, 99 (2005).

    Google Scholar 

  22. 22.

    Singer, M. et al. The Third International Consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315, 801–810 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    World Health Organization. World Health Organization and Maternal and Child Epidemiology Estimation Group (MCEE), Child causes of death, by country and by region, 2000-2016. http://www.who.int/healthinfo/global_burden_disease/childcod_methods_2000_2016.pdf (2018).

  24. 24.

    World Health Organisation. Global Maternal Sepsis Study. http://srhr.org/sepsis/ (2018).

  25. 25.

    Stoll, B. J., Holman, R. C. & Schuchat, A. Decline in sepsis-associated neonatal and infant deaths in the United States, 1979 through 1994. Pediatrics 102, e18 (1998).

    CAS  PubMed  Google Scholar 

  26. 26.

    Wynn, J. L. et al. Time for a neonatal-specific consensus definition for sepsis. Pediatr. Crit. Care Med. 15, 523–528 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    European Medicines Agency. Report on the Expert Meeting on Neonatal and Paediatric Sepsis. https://www.ema.europa.eu/en/documents/report/report-expert-meeting-neonatal-paediatric-sepsis_en.pdf (2010).

  28. 28.

    Goldstein, B., Giroir, B. & Randolph, A. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr. Crit. Care Med. 6, 2–8 (2005).

    PubMed  Google Scholar 

  29. 29.

    Wynn, J. L. & Polin, R. A. Progress in the management of neonatal sepsis: the importance of a consensus definition. Pediatr. Res. 83, 13 (2017).

    PubMed  Google Scholar 

  30. 30.

    De Backer, D. & Dorman, T. Surviving sepsis guidelines: a continuous move toward better care of patients with sepsis. JAMA 317, 807–808 (2017).

    Google Scholar 

  31. 31.

    Shankar-Hari, M. et al. Developing a new definition and assessing new clinical criteria for septic shock: for the Third International Consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315, 775–787 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Seymour, C. W. et al. Assessment of clinical criteria for sepsis: for the Third International Consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315, 762–774 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Gustot, T. Multiple organ failure in sepsis: prognosis and role of systemic inflammatory response. Curr. Opin. Crit. Care 17, 153–159 (2011).

    Google Scholar 

  34. 34.

    Vincent, J. L. et al. Sepsis in European intensive care units: results of the SOAP study. Crit. Care Med. 34, 344–353 (2006).

    Google Scholar 

  35. 35.

    Sartelli, M. et al. Raising concerns about the Sepsis-3 definitions. World J. Emerg. Surg. 13, 6 (2018).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Jiang, J., Yang, J., Mei, J., Jin, Y. & Lu, Y. Head-to-head comparison of qSOFA and SIRS criteria in predicting the mortality of infected patients in the emergency department: a meta-analysis. Scand. J. Trauma Resusc. Emerg. Med. 26, 56 (2018).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Jiang, J., Yang, J., Jin, Y., Cao, J. & Lu, Y. Role of qSOFA in predicting mortality of pneumonia: a systematic review and meta-analysis. Medicine (Baltimore) 97, e12634 (2018).

    Google Scholar 

  38. 38.

    Song, J. U., Sin, C. K., Park, H. K., Shim, S. R. & Lee, J. Performance of the quick sequential (sepsis-related) organ failure assessment score as a prognostic tool in infected patients outside the intensive care unit: a systematic review and meta-analysis. Crit. Care 22, 28 (2018).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Matics, T. J. & Sanchez-Pinto, L. N. Adaptation and validation of a pediatric sequential organ failure assessment score and evaluation of the sepsis-3 definitions in critically ill children. JAMA Pediatr. 171, e172352 (2017).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Schlapbach, L. J., Straney, L., Bellomo, R., MacLaren, G. & Pilcher, D. Prognostic accuracy of age-adapted SOFA, SIRS, PELOD-2, and qSOFA for in-hospital mortality among children with suspected infection admitted to the intensive care unit. Intensive Care Med. 44, 179–188 (2018).

    PubMed  Google Scholar 

  41. 41.

    van Nassau, S. C. et al. Translating sepsis-3 criteria in children: prognostic accuracy of age-adjusted quick SOFA score in children visiting the emergency department with suspected bacterial infection. Front. Pediatr. 6, 266 (2018).

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Kawasaki, T. et al. Paediatric sequential organ failure assessment score (pSOFA): a plea for the world-wide collaboration for consensus. Intensive Care Med. 44, 995–997 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Schlapbach, L. J. & Kissoon, N. Defining pediatric sepsis. JAMA Pediatr. 172, 312–314 (2018).

    Google Scholar 

  44. 44.

    Souza, D. Cd, Brandão, M. B. & Piva, J. P. From the International Pediatric Sepsis Conference 2005 to the Sepsis-3 Consensus. Rev. Bras. Ter. Intensiv. 30, 1–5 (2018).

    Google Scholar 

  45. 45.

    Wynn, J. L. & Polin, R. A. A neonatal sequential organ failure assessment score predicts mortality to late-onset sepsis in preterm very low birth weight infants. Pediatr. Res. https://doi.org/10.1038/s41390-019-0517-2 (2019).

  46. 46.

    National Institute for Health and Care Excellence. Sepsis: risk stratification tools. NICE Guidelines. https://www.nice.org.uk/guidance/ng51/resources/algorithm-for-managing-suspected-sepsis-in-children-aged-under-5-years-in-an-acute-hospital-setting-pdf-91853485527 (2017).

  47. 47.

    National Institute for Health and Care Excellence. Neonatal infection (early onset): antibiotics for prevention and treatment. NICE Guidelines. https://www.nice.org.uk/guidance/cg149/chapter/1-guidance (2017).

  48. 48.

    Tamim, M. M., Alesseh, H. & Aziz, H. Analysis of the efficacy of urine culture as part of sepsis evaluation in the premature infant. Pediatr. Infect. Dis. J. 22, 805–808 (2003).

    Google Scholar 

  49. 49.

    Polin, R. A. Management of neonates with suspected or proven early-onset bacterial sepsis. Pediatrics 129, 1006–1015 (2012).

    Google Scholar 

  50. 50.

    Mohseny, A. B. et al. Late-onset sepsis due to urinary tract infection in very preterm neonates is not uncommon. Eur. J. Pediatr. 177, 33–38 (2018).

    PubMed  Google Scholar 

  51. 51.

    Wynn, J. L. et al. Early sepsis does not increase the risk of late sepsis in very low birth weight neonates. J. Pediatrics 162, 942.e3–948.e3 (2013).

    Google Scholar 

  52. 52.

    Srinivasan, L. et al. Genome wide association study of sepsis in extremely premature infants. Arch. Dis. Child. Fetal neonatal Ed. 102, F439–F445 (2017).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Weston, E. J. et al. The burden of invasive early-onset neonatal sepsis in the United States, 2005–2008. Pediatr. Infect. Dis. J. 30, 937–941 (2011).

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Stoll, B. J. et al. Early-onset sepsis in very low birth weight neonates: a report from the National Institute of Child Health and Human Development Neonatal Research Network. J. Pediatr. 129, 72–80 (1996).

    CAS  PubMed  Google Scholar 

  55. 55.

    Stoll, B. J. et al. Late-onset sepsis in very low birth weight neonates: a report from the National Institute of Child Health and Human Development Neonatal Research Network. J. Pediatr. 129, 63–71 (1996).

    CAS  PubMed  Google Scholar 

  56. 56.

    Boghossian, N. S. et al. Late-onset sepsis in very low birth weight infants from singleton and multiple gestation births. J. Pediatr. 162, 1120.e1–1124.e1 (2013).

    Google Scholar 

  57. 57.

    Greenberg, R. G. et al. Late-onset sepsis in extremely premature infants: 2000–2011. Pediatr. Infect. Dis. J. 36, 774–779 (2017).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Puopolo, K. M. et al. Identification of extremely premature infants at low risk for early-onset sepsis. Pediatrics https://doi.org/10.1542/peds.2017-0925 (2017).

  59. 59.

    Stoll, B. J. et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics 110, 285 (2002).

    PubMed  Google Scholar 

  60. 60.

    Stoll, B. J. et al. Early onset neonatal sepsis: the burden of group B streptococcal and E. coli disease continues. Pediatrics 127, 817–826 (2011).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Stoll, B. J. et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. JAMA 314, 1039–1051 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Stoll, B. J. et al. Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA 292, 2357–2365 (2004).

    CAS  PubMed  Google Scholar 

  63. 63.

    Stoll, B. J. et al. Changes in pathogens causing early-onset sepsis in very-low-birth-weight infants. N. Engl. J. Med. 347, 240–247 (2002).

    PubMed  Google Scholar 

  64. 64.

    Centre for Disease Control and Prevention. ABCs Report: group B streptococcus, 2017. https://www.cdc.gov/abcs/reports-findings/survreports/gbs17.html (2017).

  65. 65.

    Australian and New Zealand Neonatal Network. ANZNN data dictionary. https://www.anznn.net/Portals/0/DataDictionaries/ANZNN_2018_Data_Dictionary.pdf (2018).

  66. 66.

    Vermont Oxford Network. Vermont Oxford Network manual of operations: Part 2 Data Definitions & Infant Data Forms. https://public.vtoxford.org/wp-content/uploads/2015/09/Manual_of_Operations_Part2_v20.pdf (2015).

  67. 67.

    Vergnano, S. et al. Neonatal infections in England: the NeonIN surveillance network. Arch. Dis. Child. Fetal Neonatal Ed. 96, F9 (2011).

    PubMed  Google Scholar 

  68. 68.

    Oeser, C. et al. Neonatal invasive fungal infection in England 2004-2010. Clin. Microbiol. Infect. 20, 936–941 (2014).

    CAS  PubMed  Google Scholar 

  69. 69.

    Prakesh Shah, E. W. Y., Chan, P. & Members of the Annual Report Review Committee. The Canadian Neonatal Network Annual Report 2016. http://www.canadianneonatalnetwork.org/Portal/LinkClick.aspx?fileticket=PJSDwNECsMI%3d&tabid=39 (2016).

  70. 70.

    Canadian Neonatal Network. The_Canadian_Neonatal_Network 2015 Abstractor’s Manual v2.2. http://www.canadianneonatalnetwork.org/Portal/LinkClick.aspx?fileticket=krvGeUTtLck%3d&tabid=69 (2015).

  71. 71.

    Singh, T., Barnes, E. H. & Isaacs, D. Early-onset neonatal infections in Australia and New Zealand, 2002-2012. Arch. Dis. Child. Fetal Neonatal Ed. 104, F248–252 (2019).

  72. 72.

    Howell, A., Isaacs, D. & Halliday, R. Oral nystatin prophylaxis and neonatal fungal infections. Arch. Dis. Child Fetal Neonatal Ed. 94, F429–F433 (2009).

    CAS  PubMed  Google Scholar 

  73. 73.

    National Reference Center For Nosocomial Infection Surveillance. NEO-KISS Protocol Nosocomial Infection Surveillance for preterm infants with birthweight <1500g. http://www.nrz-hygiene.de/fileadmin/nrz/module/neo/NEO-KISSProtocol_english_240210.pdf (2010).

  74. 74.

    Vamsi, S. R., Bhat, R. Y., Lewis, L. E. & Vandana, K. E. Time to positivity of blood cultures in neonates. Pediatr. Infect. Dis. J. 33, 212–214 (2014).

    Google Scholar 

  75. 75.

    Kumar, Y., Qunibi, M., Neal, T. J. & Yoxall, C. W. Time to positivity of neonatal blood cultures. Archives of disease in childhood. Fetal Neonatal Ed. 85, F182–F186 (2001).

    CAS  Google Scholar 

  76. 76.

    Giannoni, E. et al. Neonatal sepsis of early onset, and hospital-acquired and community-acquired late onset: a prospective population-based cohort study. J. Pediatr. 201, 106.e4–114.e4 (2018).

    Google Scholar 

  77. 77.

    Itenov, T. S., Murray, D. D. & Jensen, J. U. S. Sepsis: personalized medicine utilizing ‘omic’ technologies-a paradigm shift? Healthcare (Basel) 6, 111 (2018).

    Google Scholar 

  78. 78.

    Dargère, S., Cormier, H. & Verdon, R. Contaminants in blood cultures: importance, implications, interpretation and prevention. Clin. Microbiol. Infect. 24, 964–969 (2018).

    Google Scholar 

  79. 79.

    Centre for Disease Control and Prevention. Active bacterial core surveillance (abcs) neonatal sepsis surveillance form. https://www.cdc.gov/abcs/downloads/survpath-Nnsepsis-508.pdf (2020).

  80. 80.

    Isaacs, D., Fraser, S., Hogg, G. & Li, H. Y. Staphylococcus aureus infections in Australasian neonatal nurseries. Arch. Dis. Child. Fetal Neonatal Ed. 89, F331 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Isaacs, D. A ten year, multicentre study of coagulase negative staphylococcal infections in Australasian neonatal units. Arch. Dis. Child. Fetal Neonatal Ed. 88, F89–F93 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    May, M., Daley, A. J., Donath, S. & Isaacs, D. Early onset neonatal meningitis in Australia and New Zealand, 1992–2002. Arch. Dis. Child. Fetal Neonatal Ed. 90, F324 (2005).

  83. 83.

    Marchant, E. A., Boyce, G. K., Sadarangani, M. & Lavoie, P. M. Neonatal sepsis due to coagulase-negative staphylococci. Clin. Dev. Immunol. 2013, 586076 (2013).

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Tsai, M.-H. et al. Polymicrobial bloodstream infection in neonates: microbiology, clinical characteristics, and risk factors. PLoS ONE 9, e83082 (2014).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    McGovern, M., Flynn, L., Coyne, S. & Molloy, E. J. Question 2: does coagulase negative staphylococcal sepsis cause neurodevelopmental delay in preterm infants? Arch. Dis. Child. 104, 97–100 (2019).

    PubMed  Google Scholar 

  86. 86.

    Downey, L. C., Smith, P. B. & Benjamin, D. K. Jr. Risk factors and prevention of late-onset sepsis in premature infants. Early Hum. Dev. 86(Suppl 1), 7–12 (2010).

    PubMed  PubMed Central  Google Scholar 

  87. 87.

    Tsai, M. H. et al. Incidence, clinical characteristics and risk factors for adverse outcome in neonates with late-onset sepsis. Pediatr. Infect. Dis. J. 33, e7–e13 (2014).

    PubMed  Google Scholar 

  88. 88.

    Gastmeier, P. et al. Development of a surveillance system for nosocomial infections: the component for neonatal intensive care units in Germany. J. Hosp. Infect. 57, 126–131 (2004).

    CAS  PubMed  Google Scholar 

  89. 89.

    Chow, S. S. W., Marsney Le, R., Hossain, S., Haslam, R. & Lui, K. Report of the Australian and New Zealand Neonatal Network 2013. https://npesu.unsw.edu.au/sites/default/files/npesu/data_collection/Report%20of%20the%20Australian%20and%20New%20Zealand%20Neonatal%20Network%202013.pdf (2015).

  90. 90.

    Cortese, F. et al. Early and late infections in newborns: where do we stand? A review. Pediatr. Neonatol. 57, 265–273 (2016).

    PubMed  Google Scholar 

  91. 91.

    Wynn, J. L. et al. Timing of multiorgan dysfunction among hospitalized infants with fatal fulminant sepsis. Am. J. Perinatol. 34, 633–639 (2017).

    Google Scholar 

  92. 92.

    Kumar, N., Akangire, G., Sullivan, B., Fairchild, K. & Sampath, V. Continuous vital sign analysis for predicting and preventing neonatal diseases in the twenty-first century: big data to the forefront. Pediatr. Res. 87, 210–220 (2020).

  93. 93.

    Rashwan, N. I., Hassan, M. H., Mohey El-Deen, Z. M. & Ahmed, A. E. Validity of biomarkers in screening for neonatal sepsis—a single center -hospital based study. Pediatr. Neonatol. 60, 149–155 (2019).

    PubMed  Google Scholar 

  94. 94.

    Ng, P. C. Diagnostic markers of infection in neonates. Arch. Dis. Child. Fetal Neonatal Ed. 89, F229–F235 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Sharma, D., Farahbakhsh, N., Shastri, S. & Sharma, P. Biomarkers for diagnosis of neonatal sepsis: a literature review. J. Matern. Fetal Neonatal Med. 31, 1646–1659 (2018).

    PubMed  Google Scholar 

  96. 96.

    Ng, S. et al. Precision medicine for neonatal sepsis. Front. Mol. Biosci. 5, 70 (2018).

    PubMed  PubMed Central  Google Scholar 

  97. 97.

    Bizzarro, M. J., Dembry, L. M., Baltimore, R. S. & Gallagher, P. G. Matched case-control analysis of polymicrobial bloodstream infection in a neonatal intensive care unit. Infect. Control Hosp. Epidemiol. 29, 914–920 (2008).

    PubMed  Google Scholar 

  98. 98.

    Shah, D. K. et al. Adverse neurodevelopment in preterm infants with postnatal sepsis or necrotizing enterocolitis is mediated by white matter abnormalities on magnetic resonance imaging at term. J. Pediatr. 153, 170–175 (2008).

    PubMed  Google Scholar 

  99. 99.

    Sivanandan, S., Soraisham, A. S. & Swarnam, K. Choice and duration of antimicrobial therapy for neonatal sepsis and meningitis. Int. J. Pediatr. 2011, 712150 (2011).

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Camacho-Gonzalez, A., Spearman, P. W. & Stoll, B. J. Neonatal infectious diseases: evaluation of neonatal sepsis. Pediatr. Clin. North Am. 60, 367–389 (2013).

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    Alonzo, C. J. et al. Heart rate ranges in premature neonates using high resolution physiologic data. J. Perinat. 38, 1242–1245 (2018).

    Google Scholar 

  102. 102.

    Dempsey, E. M. Challenges in treating low blood pressure in preterm infants. Children (Basel) 2, 272–288 (2015).

    Google Scholar 

  103. 103.

    Stranak, Z. et al. International survey on diagnosis and management of hypotension in extremely preterm babies. Eur. J. Pediatr. 173, 793–798 (2014).

    PubMed  PubMed Central  Google Scholar 

  104. 104.

    McGovern, M. & Miletin, J. Cardiac output monitoring in preterm infants. Front. Pediatr. 6, 84 (2018).

    PubMed  PubMed Central  Google Scholar 

  105. 105.

    Yancey, M. K., Duff, P., Kubilis, P., Clark, P. & Frentzen, B. H. Risk factors for neonatal sepsis. Obstet. Gynecol. 87, 188–194 (1996).

    CAS  PubMed  Google Scholar 

  106. 106.

    Janota, J. et al. Characterization of multiple organ dysfunction syndrome in very low birthweight infants: a new sequential scoring system. Shock 15, 348–352 (2001).

    CAS  PubMed  Google Scholar 

  107. 107.

    Blatt, S. & Schroth, M. Neonatal sepsis: clinical considerations. J. Child Sci. 07, e54–e59 (2017).

    Google Scholar 

  108. 108.

    Dani, C., Corsini, I. & Poggi, C. Risk factors for intubation-surfactant-extubation (INSURE) failure and multiple INSURE strategy in preterm infants. Early Hum. Dev. 88(Suppl 1), S3–S4 (2012).

    PubMed  Google Scholar 

  109. 109.

    American Academy of Pediatrics Subcommittee on Hyperbilirubinemia. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics 114, 297–316 (2004).

  110. 110.

    Beiner, M. E. et al. Risk factors for neonatal thrombocytopenia in preterm infants. Am. J. Perinatol. 20, 49–54 (2003).

    PubMed  Google Scholar 

  111. 111.

    NNNI. Systolic blood pressure in babies of less than 32 weeks gestation in the first year of life. Arch. Dis. Child. Fetal Neonatal Ed. 80, F38 (1999).

    Google Scholar 

  112. 112.

    Go, H. et al. Neonatal and maternal serum creatinine levels during the early postnatal period in preterm and term infants. PLoS ONE 13, e0196721 (2018).

    PubMed  PubMed Central  Google Scholar 

  113. 113.

    Woodgate, P. & Jardine, L. A. Neonatal jaundice. BMJ Clin. Evid. 2011, 0319 (2011).

    PubMed  PubMed Central  Google Scholar 

  114. 114.

    Guignard, J. P. & Drukker, A. Why do newborn infants have a high plasma creatinine? Pediatrics 103, e49 (1999).

    CAS  Google Scholar 

  115. 115.

    Kaiser Permanente Division of Research. Neonatal early-onset sepsis calculator. https://neonatalsepsiscalculator.kaiserpermanente.org/# (2019).

  116. 116.

    Pierrat, V. et al. Neurodevelopmental outcome at 2 years for preterm children born at 22 to 34 weeks’ gestation in France in 2011: EPIPAGE-2 cohort study. BMJ 358, j3448 (2017).

    PubMed  PubMed Central  Google Scholar 

  117. 117.

    Iwashyna, T. J., Ely, E. W., Smith, D. M. & Langa, K. M. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 304, 1787–1794 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Kermorvant-Duchemin, E., Laborie, S., Rabilloud, M., Lapillonne, A. & Claris, O. Outcome and prognostic factors in neonates with septic shock. Pediatr. Crit. Care Med. 9, 186–191 (2008).

    PubMed  Google Scholar 

  119. 119.

    Poutsiaka, D. D. et al. Prospective observational study comparing sepsis-2 and sepsis-3 definitions in predicting mortality in critically ill patients. Open Forum Infect. Dis. 6, ofz271–ofz271 (2019).

    PubMed  PubMed Central  Google Scholar 

  120. 120.

    Cheng, B. et al. Comparison of the performance between sepsis-1 and sepsis-3 in ICUs in China: a retrospective multicenter study. Shock 48, 301–306 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded in part by the National Children’s Research Centre, Dublin, Ireland. E.G. is supported by the Leenaards Foundation and E.J.M. by the Health Research Board of Ireland.

Author information

Affiliations

Authors

Consortia

Contributions

M.M. and E.J.M.: Manuscript conception and design, literature review and manuscript revision, and revised and edited the manuscript before submission. E.G., H.K., M.A.T., A.v.d.H., J.M.B., J.M.K., F.M.K., J.M., R.F., M.D., S.H.P.S., W.P.d.B., T.S., I.K.M.R., and J.L.W.: Significant contributions to the intellectual content and literature review of the manuscript and revised and the edited manuscript before submission.

Corresponding author

Correspondence to Eleanor J. Molloy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Disclosure

The authors confirm that this manuscript represents original work, has not been published previously and has not been submitted for publication elsewhere.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McGovern, M., Giannoni, E., Kuester, H. et al. Challenges in developing a consensus definition of neonatal sepsis. Pediatr Res 88, 14–26 (2020). https://doi.org/10.1038/s41390-020-0785-x

Download citation

Further reading

Search

Quick links