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Abstract—The statistical theory based on the parametric family of Rényi entropy functionals is a gen-
eralization of Gibbs statistics. Depending on the value of the involved parameter, the corresponding
Rényi distribution can take both an exponential form and a power-law form, which is typical for a wide
range of statistical models. In this paper, we prove the energy equipartition theorem in the case of Rényi
statistics, which makes it possible to solve the problem of obtaining the average energy for a large number
of classical statistical models. The proposed approach for calculating the average energy is compared
with the procedure for directly calculating this quantity for a system described by the simplest power-low
Hamiltonian. New relations are presented that simplify the calculations in the considered theory. A special
case of the Rényi distribution, which represents a generalization of a power-low distribution and thus allows
us to approximate some empirical data more precisely, has been studied.
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INTRODUCTION

The entropy functional proposed by the Hungarian
mathematician Alfred Rényi [1, 2] makes it possible to
generalize the famous Boltzmann–Gibbs–Shannon
entropy [3], which is widely used in equilibrium statis-
tical physics. The procedure for maximizing the Rényi
entropy functional under certain conditions leads to
the Rényi distribution [4]. It is important to note
that the limiting cases of this distribution are the
exponential Gibbs distribution and the power-law
distribution. The latter is known as the Pareto dis-
tribution [5] or Zipf’s law [6] and is typical for a
wide range of self-organizing systems [7], phenom-
ena of fracture theory [8], for describing atmospheric
cascades of cosmic rays [9], and also for a large
number of statistical models that arise in sciences
such as economics [10], biology [11], network the-
ory [12], and linguistics [13]. The Rényi distribution
itself can be applied to the description of multifractal
structures [14], turbulence [15], quantum entangle-
ment [16], statistical earthquake analysis [17], and
fractional diffusion [18].

However, in order to write the explicit form of the
Rényi distribution for specific systems, it is necessary
to set the parameter value q > 0 [1] involved in the
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Rényi entropy functional. The question of estab-
lishing a connection between the parameter q and
characteristics of statistical systems is open and the
values of q are determined experimentally. In addition,
the distribution involves the average energy whose
calculation is a very cumbersome problem and often
cannot be performed analytically. As it turns out,
there is a general approach to solve this problem for
a wide range of classical statistical models.

In this paper, we prove the energy equipartition
theorem for the case of Rényi statistics. The ap-
plication of this theorem allows us to quite simply
determine the average energy of a large number of
statistical systems, examples of which are a harmonic
oscillator, as well as classical and ultrarelativistic
ideal gases. We consider a system with a model
power-law Hamiltonian of the simplest form, which
demonstrates the advantage of the method used to
obtain the average energy over the method of direct
calculation of this quantity. New useful relations for
the Rényi entropy and distribution obtained during
our study are also presented. A q-formula is derived
for the first time, which greatly simplifies the calcula-
tions in this theory.

An important point of this work is the study of the
asymptotic transition of the Rényi distribution to a
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power-law form [19]. Graphs of the limiting distri-
bution clearly demonstrate the applicability of Rényi
statistics to a large number of phenomena, which is
confirmed by numerous experimental data.

We emphasize that, in order to make these rela-
tions and the obtained results more descriptive, we
will adhere to the standard notation, without resort-
ing, as is often the case in studies on this topic, to
the formalism of the so-called q-deformed functions,
which, in our opinion, does not contribute to the
disclosure of the physical meaning of what occurs.

1. THE RÉNYI DISTRIBUTION

We consider some statistical system in which it is
possible to implement W microstates with probabili-
ties p = {pi}Wi=1. The Rényi entropy functional of this
system is defined as follows:

S(R)(p) =
1

1− q
ln

W∑

i=1

pi
q, q > 0. (1)

It generalizes the famous Boltzmann–Gibbs–Shannon
entropy functional. In fact, it is easy to see that

lim
q→1

S(R)(p) = S(G)(p) = −
W∑

i=1

pi ln pi. (2)

It is important to note that the Tsallis entropy [20],
which is introduced independently and axiomatically
in many papers, is a special case of the Rényi entropy
for |1− q| � 1. When the normalization

∑
i pi = 1

is taken into account, the condition |1− q| � 1 is
equivalent to the fact that

∣∣∑
i p

q
i − 1

∣∣ � 1. There-
fore, expanding (1) into a Taylor series with respect to∑

i p
q
i near unity up to the first order, we obtain

1

1− q
ln

W∑

i=1

pi
q

∣∣∣∣
|1−q|�1

≈ 1

1− q

W∑

i=1

pi
q = S(T )(p).

(3)

Thus, we arrive at the above-mentioned Tsallis en-
tropy, which is characteristic for nonadditive statis-
tical systems [21, 22], as it is generally accepted
to date. This topic is addressed in the Internet re-
source [23], which contains both theoretical and ex-
perimental studies of models described by the entropy
functional of this type.

The choice of the entropy form (1) was substanti-
ated by Shore and Johnson and is explained in [24–
26].

Following Jaynes’ approach [27, 28], we obtain the
Rényi distribution corresponding to the introduced
entropy functional SR(p). Fixing the normalization
condition

∑W
i pi = 1 and also the average energy

U =
∑W

i piHi of the considered system, we get the
functional

Φ(R)(p)

=
1

1− q
ln

W∑

i=1

pi
q − α

W∑

i=1

pi − β
W∑

i=1

piHi, (4)

in which α and β are constant Lagrange multipliers.
The necessary condition for the extremum of func-
tional (4) has the form

δΦ(R)(p)

δpi
=

q

1− q

pq−1
i∑
k p

q
k

− α− βHi = 0. (5)

Multiplying this relation by pi and summing over the

index i = 1,W , by using the definition of the internal
energy U and the normalization condition for the
distribution, we obtain an expression for the factor α:

α =
q

1− q
− βU. (6)

Substituting (6) into (5) and expressing pi, we have
the relation

pi =

(
1− β

q − 1

q
(Hi − U)

) 1
q−1

×
(

W∑

k=1

pqk

) 1
q−1

. (7)

To find an expression for the last factor in the right-
hand side of (7), we use the normalization condition
for the distribution. Hence,

(
W∑

k=1

pqk

)− 1
q−1

=

W∑

i=1

(
1− β

q − 1

q
(Hi − U)

) 1
q−1

. (8)

Thus, the solution to the problem of maximizing the
functional (4) is the Rényi distribution

p
(R)
i =

1

Z(R)

(
1− β

q − 1

q
(Hi − U)

) 1
q−1

, (9)

where

Z(R) =

W∑

i=1

(
1− β

q − 1

q
(Hi − U)

) 1
q−1

(10)

plays the role of a statistical sum (partition function).

We should specially mention the case of classical
systems for which the spectrum of feasible energy
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values is continuous. Then we deal with a probability
density of the form

p(R)

=
1

Z(R)

(
1− β

q − 1

q
(H(r, p) − U)

) 1
q−1

, (11)

Z(R)

=

∫

X

(
1− β

q − 1

q
(H(r, p)− U)

) 1
q−1

dΓ, (12)

where r = (r1, r2, . . . , rN ) are the particle coordi-
nates, p = (p1,p2, . . . ,pN ) are the particle mo-
menta, N is the number of particles, and X is the
volume occupied by the system in the phase space
of states. An element of integration over the phase
space has the form

dΓ =
1

N !

N∏

i=1

γi
dridpi

(2π�)3
, (13)

where γi is understood as the number of internal
degrees of freedom of a particle that is not subject
to the classical transition with index i and N ! is the
number of permutations of identical particles.

Despite the difference in the cases of continuous
and discrete distributions, it is convenient to under-
stand i = 1,W as an index, which can take on both
a discrete and a continuous spectrum of values; here
the summation means integration in the second case.
This allows us to use the notation p = {pi} in the
context of both distribution types.

We also note the fact that the Rényi distribution
transforms into the canonical Gibbs distribution in
the limit q → 1

lim
q→1

p
(R)
i = p

(G)
i =

e−βHi

Z
(G)
c

, (14)

Z(G)
c =

W∑

i=1

e−βHi . (15)

Comparing the statistical Rényi entropy S(R)(p(R))
with the thermodynamic Clausius entropy, we can
show that the Lagrange multiplier β has the meaning
of the inverse temperature of the system β = 1/θ,
which will be considered in one of the subsequent
sections.

Thus, we have come to the most general form
of the statistical distribution, but it does not have
a number of properties convenient for the calcula-
tions inherent in the Gibbs exponential, namely, the
property of factorizing and preserving the shape of
the distribution for differentiation with respect to a
parameter. Therefore, the following formula becomes
useful in the process of calculations using the Rényi
distribution.

2. q-FORMULA

Let us pay attention to the definition of the average
energy

U =

W∑

i

p
(R)
i Hi. (16)

On the other hand, due to the distribution normaliza-
tion condition

∑W
i p

(R)
i = 1, we can write

U =
W∑

i

p
(R)
i U. (17)

Thus, we come to the relation
W∑

i

p
(R)
i U =

W∑

i

p
(R)
i Hi (18)

or in equivalent form
W∑

i

p
(R)
i ΔHi = 0, (19)

where the notation ΔHi = Hi − U is introduced for
brevity of calculation records. Substituting the ex-
plicit form of the Rényi distribution (9), we find

W∑

i=1

ΔHi

(
1− β

q − 1

q
ΔHi

) 1
q−1

= 0. (20)

Assuming β �= 0 and q �= 1, we multiply this expres-
sion by β(1− q)/q and add the statistical sum Z(R)

written in explicit form (10) to both sides of the equal-
ity. We then obtain the so-called q-formula, which is
very useful for calculations:

W∑

i=1

(
1− β

q − 1

q
(Hi − U)

) 1
q−1

=

W∑

i=1

(
1− β

q − 1

q
(Hi − U)

) q
q−1

, (21)

moreover, for q → 1, this formula remains valid and
becomes a trivial equality.

At first glance, the established equality may seem
strange. In fact we need to remember that the param-
eter β depends on U , which ensures the validity of this
relation. Moreover, for given U , the obtained equality
can be considered as an equation in the unknown
parameter β; however, this relationship between the
quantities β and U arises even when the problem for
the conditional extremum of the Rényi entropy func-
tional is solved. It is also important to note that the
q-formula is valid only if the partition function and the
expression for the average energy converge. In turn,
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these requirements are equivalent to the condition for
the existence of the Rényi distribution.

The relation plays an important role in the deriva-
tion of properties of the Rényi distribution and en-
tropy.

3. EXPRESSION FOR THE RÉNYI ENTROPY

For convenience, we will use the notation S(R)

below as a short notation for S(R)(p(R)).
Lemma 1. The Rényi entropy is related to the

statistical sum of the Rényi distribution by the
formula

S(R) = lnZ(R). (22)

Proof. The definition of the statistical sum (10)
and q-formula (21) imply that

Z(R) =

W∑

i=1

(
1− β

q − 1

q
(Hi − U)

) q
q−1

. (23)

Therefore,

S(R) =
1

1− q
ln

W∑

i=1

(
p
(R)
i

)q
=

1

1− q

× ln

[
1(

Z(R)
)q

W∑

i=1

(
1− β

q − 1

q
(Hi − U)

) q
q−1

]

=
1

1− q
ln
(
Z(R)

)(1−q)
= lnZ(R). (24)

�
It may be noted that a similar form of the ex-

pression for the entropy is also valid in the case of
the Gibbs statistics. To demonstrate this, let us first
draw attention to the fact that the Rényi distribution
contains a dependence on the energy deviations from
the average value ΔHi = (Hi − U). Let us reduce
the canonical distribution (14) to a similar kind of de-
pendence, which is easy to do due to the exponential
factorization property:

p
(G)
i =

e−β0Hi

Z
(G)
c

=
e−β0(Hi−U)

Z(G)
,

Z(G) = eβ0UZ(G)
c .

Thus,

S(G) = −
W∑

i=1

p
(G)
i ln p

(G)
i

= −
W∑

i=1

p
(G)
i ln e−β0Hi +

W∑

i=1

p
(G)
i lnZ(G)

c

= β0

W∑

i=1

p
(G)
i Hi + lnZ(G)

c

W∑

i=1

p
(G)
i

= β0U + lnZ(G)
c = lnZ(G), (25)

which corresponds to the form of expression (22).
Moreover, lim

q→1
Z(R) = Z(G), whence it follows that

lim
q→1

β = β0 = 1/θ.

Using the obtained form of the Rényi entropy (22),
one can easily obtain the following differential rela-
tion.

Lemma 2. The Rényi entropy S(R) satisfies the
equality

∂S(R)

∂β
= β

∂U

∂β
. (26)

Proof.

∂S(R)

∂β
=

1

Z(R)

∂Z(R)

∂β

=
1

Z(R)

∂

∂β

W∑

i=1

(
1− q − 1

q
βΔHi

) q
q−1

=
1

Z(R)

W∑

i=1

∂

∂β

(
1− q − 1

q
βΔHi

) q
q−1

= − 1

Z(R)

W∑

i=1

ΔHi

(
1− q − 1

q
βΔHi

) 1
q−1

+
1

Z(R)

W∑

i=1

β
∂U

∂β

(
1− q − 1

q
βΔHi

) 1
q−1

= β
∂U

∂β

1

Z(R)

W∑

i=1

(
1− q − 1

q
βΔHi

) 1
q−1

= β
∂U

∂β
. (27)

We note that the q-formula was used in the second
equality. �

It is seen from (10) and (22) that S(R) is a func-
tion of ΔHi = (Hi − U). Therefore, we can show
in a completely similar manner to how it is done for
S(G) [29] that the statistical Rényi entropy S(R) under
study corresponds to the thermodynamic Clausius
entropy function in the laws of thermodynamics.

4. THERMODYNAMIC ENTROPY
AND THE PHYSICAL MEANING

OF THE LAGRANGE MULTIPLIER β

We consider a system whose state is specified
by a set of parameters (U, x,N), where x = (V, a),
U is the average energy, N is the number of parti-
cles, V is the volume of the system, and a are the
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external fields acting on the system. Then, the en-
ergy levels {Hi}Wi=1 depends on the parameters x and
N . Therefore, expression (10) for the partition sum
implies that Z(R) = Z(R)(U, x,N), whence S(R) =

lnZ(R) = S(R)(U, x,N). To avoid the encumbrance
of the calculations, we omit the index (R) for a time.
We write the total entropy differential

dS =

(
∂S

∂U

)

x,N

dU +

(
∂S

∂x

)

U,N

dx

+

(
∂S

∂N

)

U,x

dN. (28)

Let us consider each partial derivative separately. To
calculate them, we will use the obtained q-formula (21)
and also the expression for entropy (22):

(
∂S

∂U

)

x,N

=
1

Z

∂

∂U

W∑

i=1

(
1− β

q − 1

q
(Hi − U)

) q
q−1

= −
(
∂β

∂U

)

x,N

W∑

i=1

(Hi − U)pi

+ β
W∑

i=1

pi = β; (29)

(
∂S

∂x

)

U,N

=
1

Z

∂

∂x

W∑

i=1

(
1− β

q − 1

q
(Hi − U)

) q
q−1

= −
(
∂β

∂x

)

U,N

W∑

i=1

(Hi − U)pi

+ β

W∑

i=1

pi

(
−∂Hi

∂x

)

U,N

= β

W∑

i=1

pi

(
−∂Hi

∂x

)

U,N

. (30)

We introduce the notation for the resultant general-
ized force

Xi = −
(
∂Hi

∂x

)

U,N

. (31)

Then
(
∂S

∂x

)

U,N

= β

W∑

i=1

piXi = βX, (32)

where X is the average generalized force.
Similarly, we find that

(
∂S

∂N

)

U,x

= β

W∑

i=1

pi

(
−∂Hi

∂N

)
. (33)

Let us consider the resulting construction in more
detail. Taking the fact that the minimum step in N
is equal to 1 into account, we have

W∑

i=1

pi

(
∂Hi

∂N

)

=

W∑

i=1

pi

(
Hi(N + 1)−Hi(N)

1

)
, (34)

This sum is the average over the distributions pi of
the change in the energy levels Hi when one particle
is added in the isolated system, whereas the system
does not receive heat and does not perform work.
Therefore,

W∑

i=1

pi

(
Hi(N + 1)−Hi(N)

1

)

=

(
∂U

∂N

)

δQ=0
δW=0

= μ, (35)

where μ is the chemical potential;
(
∂S

∂N

)

U,x

= −βμ. (36)

Thus, the total differential of the Rényi entropy in
the variables (U, x,N) has the form

dS = β(dU +Xdx− μdN). (37)

Noting that, by construction, Xdx is the work pro-
duced by the system and recalling the first law of
thermodynamics, we come to the relation

dS = βδQ, (38)

in which δQ is the amount of heat received by the
system. It is seen from (38) that β is an integrating
factor for the expression of the first law of thermody-
namics. However, as we know from the second law
of thermodynamics, this integrating factor is equal to
the inverse temperature of the system; therefore, for
any admissible q,

(
∂S

∂U

)

x,N

= β = 1/θ. (39)

Thus, we come to the conclusion that the statistical
Rényi entropy introduced into consideration corre-
sponds to the Clausius thermodynamic entropy. This
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fact allows us to use all thermodynamic relations in
the context of the Rényi statistics.

According to (39), the Rényi distribution can be
written as

p
(R)
i =

1

Z(R)

(
1− q − 1

q

Hi − U

θ

) 1
q−1

,

i = 1,W ,

Z(R) =

W∑

i=1

(
1− q − 1

q

Hi − U

θ

) 1
q−1

.

5. ENERGY EQUIPARTITION THEOREM

Theorem 1. For a classical statistical system
with D-dimensional phase space X =
(x1, x2, . . . , xD) and Hamiltonian H(X), which is
in the state of thermodynamic equilibrium, the
following relation holds:

〈
xk

∂H

∂xk

〉
= θ (40)

for any positive integer k ≤ D, in which the aver-
aging is performed over the Rényi distribution.

Proof. Let us prove the validity of the stated
theorem. For this, it is convenient to use the q-
formula (21). With its use, taking the normalization
condition

∑W
i pi = 1 and the form of the Rényi dis-

tribution (9) into account, we obtain the expression

1

Z(R)

W∑

i=1

(
1− β

q − 1

q
(Hi − U)

) q
q−1

= 1. (41)

For the convenience of further reasoning, we intro-
duce the notation:

λ =
q − 1

q
, ΔHi = Hi − U. (42)

Thus, we come to the relation

1

Z(R)

W∑

i=1

(1− βλΔHi)
1
λ = 1. (43)

The considered theorem is valid for classical systems
with a continuous energy spectrum; therefore, it is
necessary to pass from the discrete case with Hi to
the function H(x1, x2, . . . , xD), which continuously
depends on its arguments. In this case, the sum-
mation over the states of the system turns into inte-
gration over the volume of the phase space X. The
integration element is denoted as

dΓ =
1

(D/2d)!

dx1dx2 · · · dxD
(2π�)D/2

D/2d∏

i=1

γi, (44)

where γi is used to take the quantum degrees of
freedom of a particle with index i into account, d
is the dimension of the physical space, and (D/2d)!
determines the number of permutations of identical
particles whose inclusion is essential in the transition
from the quantum case to the classical case, in which
each particle is numbered. The factor (2π�)D/2 is
the volume of a cell in the phase space X, where the
same number of position and momentum variables is
involved. Then expression (43) takes the form

1

Z(R)

∫

X

(1− βλΔH)
1
λdΓ = 1. (45)

Assuming that H depends explicitly on xk (k =

1,D), we apply the integration formula by parts with
respect to the designated variable. Then,

∫

X

(1− βλΔH)
1
λ dΓ

=

∫

Xk

[
(1− βλΔH)

1
λ xk

] ∣∣∣∣
xk=b

xk=a

dΓk

+ β

∫

X

xk
∂ΔH

∂xk
(1− βλΔH)

1
λ
−1dΓ, (46)

where Xk = (x1, x2, . . . , xk−1, xk+1, . . . , xD), dΓk =
dΓ/dxk, and a and b are the boundaries of the region
of integration with respect to the variable xk. We
also make a remark about the derivative of the energy
deviation from the mean value:

∂ΔH

∂xk
=

∂H

∂xk
− ∂U

∂xk
, (47)

but U is independent of the variable xk; hence,

∂U

∂xk
= 0 ⇒ ∂ΔH

∂xk
=

∂H

∂xk
. (48)

As a result, we obtain

1

Z(R)

∫

Xk

[
(1− βλΔH)

1
λ xk

] ∣∣∣∣
xk=b

xk=a

dΓk

+
β

Z(R)

∫

X

xk
∂H

∂xk
(1− βλΔH)

1
λ
−1dΓ = 1. (49)

Let us consider the first integral in (49). The factor
(1− βλΔH) involved in the integrand determines
one-to-one zero values of the probabilities in the
Rényi distribution. That is,

p(R)(X0) = 0 ⇔ (1− βλΔH(X0)) = 0,

where p(R)(X0) is the value of the probability density
on the set X0 ⊂ X.
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In accordance with the physical meaning of the
probability density of states, this function must be
zero on the boundary of the region of possible val-
ues of the phase space variables; i.e., it has limited
support. Therefore, in the case of finite values of a
and b, the integral is equal to zero. In the case where
the limits of integration contain +∞ or −∞, we deal
with uncertainty of the form 0 · ∞; however, now we
can use the fact that the system is physically bounded
and all its parameters are finite quantities. Therefore,
already for some finite but sufficiently large absolute
values of a and b, a region of the phase space is
reached such that the probability of finding the system
in this region is equal to zero. Based on the above
arguments, we can conclude that

1

Z(R)

∫

Xk

[
(1− βλΔH)

1
λ xk

] ∣∣∣∣
xk=b

xk=a

dΓk = 0 (50)

and then we have the relation
1

Z(R)

∫

X

xk
∂H

∂xk
(1− βλΔH)

1
λ
−1dΓ =

1

β
. (51)

Recalling that 1/λ− 1 = 1/(q − 1) and β = 1/θ, we
get

〈
xk

∂H

∂xk

〉
= θ, (52)

where the averaging is performed over the Rényi dis-
tribution.

This completes the proof. �
The proved theorem makes it possible to easily ob-

tain the average internal energy of a large number of
statistical systems. Moreover, the same form of virial
relations in the Gibbs and Rényi statistics leads to
familiar expressions for the internal energy. As an ex-
ample, Uosc = θ for a one-dimensional harmonic os-
cillator, U0 = (3/2)Nθ for a free monatomic gas, and
UR
0 = 3Nθ for an ultrarelativistic monatomic gas.

6. A SYSTEM WITH A MODEL
HAMILTONIAN H = Cxk

In order to demonstrate the advantages of using
the energy equipartition theorem, we consider the
important case of a model power-law Hamiltonian of
one variable

H = Cxk, x ∈ [0,+∞), (53)

where C and k are some positive constants. This
problem was considered in [30], where a method of
direct calculation of the average energy value is out-
lined. Let us demonstrate how much this process

can be simplified due to the equipartition theorem. It
follows from the proved theorem that

U = 〈H〉 = 1

k

〈
x
∂H

∂x

〉
=

θ

k
. (54)

However, it should be noted that such a method for
calculating the average energy does not allow one
to obtain the corresponding convergence conditions
for U , which naturally follow from the direct calcu-
lation procedure. Therefore, in order to obtain the
mentioned restrictions, we present the appropriate
calculations.

By definition,

U =
1

Z

×
+∞∫

0

Cxk
(
1− β

q − 1

q
(Cxk − U)

) 1
q−1

dx, (55)

where

Z =

+∞∫

0

(
1− β

q − 1

q
(Cxk − U)

) 1
q−1

dx (56)

We note that the normalization Z has no index R,
since in this case Z is the normalization integral
but not the partition function that appeared in the
previous sections.

To perform the corresponding calculations, we use
the value of the table integral [31] of the form

I =

+∞∫

0

xμ−1

(a+ bxν)λ
dx

=
1

νaλ

(a
b

)μ/ν Γ
(μ
ν

)
Γ
(
λ− μ

ν

)

Γ (λ)
, (57)

with the convergence conditions:

0 <
μ

ν
< λ, λ > 1. (58)

First, we consider an expression for the normalization
Z, which has a structure similar to the integral I.
From the form (57), we can conclude that Z = I for

λ =
1

1− q
, ν = k, μ = 1,

a = 1 + βU
q − 1

q
, b = −Cβ

q − 1

q
.

Thus,

Z =
1

k

(
1 + βU

q − 1

q

)(
1

q−1
+ 1

k

)
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×
(
−Cβ

q − 1

q

)(− 1
k )Γ

(
1
k

)
Γ
(

1
1−q −

1
k

)

Γ
(

1
1−q

) (59)

under the convergence conditions:

0 <
1

k
<

1

1− q
,

1

1− q
> 1. (60)

We proceed similarly with the integral

J =

+∞∫

0

xk
(
1− β

q − 1

q
(Cxk − U)

) 1
q−1

dx, (61)

which takes the form (57) for

λ =
1

1− q
, ν = k, μ = k + 1,

a = 1 + βU
q − 1

q
, b = −Cβ

q − 1

q
,

Then, using expression (57), we obtain

J =
1

k

(
1 + βU

q − 1

q

)(
1

q−1
+ 1

k
+1

)

×
(
−Cβ

q − 1

q

)(− 1
k
−1)

×
Γ
(
1
k + 1

)
Γ
(

1
1−q −

1
k − 1

)

Γ
(

1
1−q

) (62)

with the convergence conditions:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 <
1

k
+ 1 <

1

1− q

1 <
1

1− q

⇒ qmin =
1

1 + k
(63)

As a result of taking the integrals, expression (55)
takes the form

U = C
J

Z
=

1

β

(
q

1− q
− βU

)
Γ
(
1
k + 1

)

Γ
(
1
k

)

× Γ

(
1

k

) Γ
(

1
1−q −

1
k − 1

)

Γ
(

1
1−q −

1
k

) . (64)

Recalling a useful property of the Γ-function: Γ(z +
1) = zΓ(z), we use it to simplify the resulting expres-
sion

Γ

(
1

1− q
− 1

k

)

=

(
1

1− q
− 1

k
− 1

)
Γ

(
1

1− q
− 1

k
− 1

)
,

Γ

(
1

k
+ 1

)
=

1

k
Γ

(
1

k

)
.

Then, from (64), we obtain the average energy

U =
1

βk
. (65)

Remembering that 1/β = θ, we obtain the result pre-
dicted by the energy equipartition theorem

U =
θ

k
. (66)

Thus, by direct computation, we have verified the va-
lidity of the energy equipartition theorem and also ob-
tained the convergence condition q > qmin = 1/(1 +
k). Thus, the Rényi distribution for the system with
model Hamiltonian (53) looks as follows:

p(R)(x) =
1

Z(R)

(
1− q − 1

kq
(Cux

k − 1)

) 1
q−1

, (67)

where the notation Cu = C/U is introduced.

7. GENERALIZATION
OF THE POWER-LAW DISTRIBUTION

From the practical point of view, the limiting case
of this distribution for q → qmin is of particular inter-
est. Therefore, we consider it in more detail. Since
the mean energy integral diverges for q = qmin, we
introduce a positive parameter ε → 0 such that q =
qmin + ε.

p(R)(x, ε) = (Z)−1
(
Cux

k
)− k+1

k (1+ε k+1
k )

×
[
1− ε

(k + 1)2

k

×
(
1−

(
Cux

k
)−1

)]− k+1
k (1+ε k+1

k )
. (68)

The normalization function of this distribution has the
form

Z =
1

k

(
ε
(k + 1)2

k

)−
(
1+ε(k+1

k )
2
)

×
[
Cu

(
1− ε

(k + 1)2

k

)]− 1
k

×
Γ
(
1
k

)
Γ
(
1 + ε

(
k+1
k

)2)

Γ
(
1 + ε

(
k+1
k

)2
+ 1

k

) . (69)

We note that the resulting normalization coincides
with the approximate value of the normalization func-
tion (59) near q = qmin. However, it should be re-
membered that if we approximate distributions the
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Fig. 1. Cumulative distribution functions p(x) and the corresponding most probable power-law approximations for six different
sets of empirical data [32]: (a) Population of US cities. (b) Magnitude of earthquakes. (c) Number of citations of published
scientific papers. (d) The amount of information in bytes received in response to HTTP (network) requests from computers
of a large research laboratory. (e) Number of customers affected by blackouts in US. (f) Sizes of e-mail address books at a
university.

function Z may not coincide with the approximation
of the original normalization function, since generally
the procedure of approximation of the distribution
violates the original normalization.

Let us analyze the resulting approximation. Ob-
viously, for ε = 0, distribution (68) takes on a power-
law form

p(R)
∣∣∣
ε→0

∼ x−(k+1). (70)

However, it is essential to recall that for q = qmin
(ε = 0), the average energy diverges, and hence, the
Rényi distribution only asymptotically approaches the
power form as ε → 0.

Now we consider the case x → +∞. It is easy to
see from (68) that in this limit we obtain the power
law dependence

p(R)
∣∣∣
x→+∞

∼ x−(k+1)(1+ε k+1
k ). (71)

Passing to the logarithmic scale, it is easy to observe
that the slope of the graph of the dependence of ln p(R)

on lnx in the considered limit x → +∞ is determined
by the expression −(k + 1)

(
1 + εk+1

k

)
.

In the region of small values of the variable x (as

x → 0), distribution (68) reaches the constant

p(R)
∣∣∣
x→0

= (Z)−1

[
ε
(k + 1)2

k

]− k+1
k (1+ε k+1

k )
. (72)

Let us demonstrate the general nature of distribu-
tion (68) depending on the parameters ε and k. For
definiteness, we choose C = 1 and β = 0.01. The
corresponding graphs are shown in Figs. 1 and 2.

One can see that a characteristic feature of the
Rényi distribution, which distinguishes it from the
power-law distribution, is the presence of a so-called
plateau observed in the region x � 1. In this case, it
depends on the parameter of the Hamiltonian k how
smooth or abrupt the transition from a constant to a
power-law dependence will be.

The experimental study of systems, which are usu-
ally attributed to the power distribution law, often
leads to statistics corresponding to the particular case
of the Rényi distribution under consideration. Many
examples for dependences of this kind can be found
in [5, 32], where the statistics of a large number of
systems of different nature are collected and analyzed:
from earthquakes and forest fires to the population
of cities and the citation rate of papers. The graphs
from [32] most similar in form with dependence (68)
are shown in Fig. 3.
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Fig. 2. The Rényi distribution for the system with Hamil-
tonian H = x2 and β = 0.01 for q = qmin + ε.
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Fig. 3. The Rényi distribution for the system with Hamil-
tonian H = xk and β = 0.01 for q = qmin + 10−4.

As an example of the appearance of the obtained
distribution (68), we also note the results of study
of the statistics of the descent of rice avalanches in
the experiment examined in [33–35]. Furthermore,
this experience is considered in the book [7]. Another
amazing example is the statistics of vortex avalanches
(magnetic flux avalanches) in high-temperature su-
perconductors [36]. All this suggests the idea of the
applicability of the Rényi distribution to a wide range
of systems and phenomena.

CONCLUSIONS

In the paper, the energy equipartition theorem over
the degrees of freedom of classical statistical systems
has been proved for the first time in the case of the
Rényi distribution obtained by maximizing the Rényi

entropy functional. Thus, we succeeded in expanding
the range of applicability of this theorem to the class of
statistical models described by the Rényi distribution,
which generalizes the canonical Gibbs distribution.
The proved theorem is a powerful tool that makes it
possible to very quickly obtain the value of the average
energy for a large number of statistical models, which
enables us to avoid the time-consuming problem of
direct calculation of this characteristics of systems.

During the study of the properties of the Rényi dis-
tribution, some useful relations were obtained, among
which it is necessary to distinguish the so-called q-
formula, which played a central role in the proof of the
above theorem. The equality between the logarithm of
the partition function of the Rényi distribution and the
Rényi entropy was deduced, which made it possible
to establish the relationship of the derivatives of the
entropy and the average energy with respect to tem-
perature.

A connection is established between the statisti-
cal Rényi entropy and the thermodynamic Clausius
entropy function. As a result, the physical meaning
of the Lagrange multiplier β involved in the Rényi
distribution is revealed.

Using an example of a system with a model
Hamiltonian H = Cxk, a direct method for calcu-
lating the average energy is demonstrated, which
allows us to obtain a constraint on the distribution
parameter q and also led to a result that confirms the
equipartition theorem.

Given the model, we have studied the behavior of
the distribution for q close to qmin. A characteristic
and important feature of this case is the presence of
a horizontal section, that is, a plateau in the area of
small values of x.

Figure 1 demonstrates that many empirical data
are well approximated by the power-law distribution
only for sufficiently large values of the random vari-
able. In the area of small values, in turn, we observe
a clear deviation from this distribution. This phe-
nomenon of deformation of the power-law distribu-
tion indicates the applicability of Rényi statistics to a
wide range of phenomena related to various fields of
science.

It should be noted that the q-statistics is a promis-
ing research direction related to the study of complex
and self-organizing systems. This is confirmed by the
progress in the generalized statistics applied to the
analysis of the most pressing challenges, for example,
the COVID-19 epidemics to which [37] is devoted.
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