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The mathematics of multiple 
lockdowns
Antonio Scala  

While vaccination is the optimal response to an epidemic, recent events have obliged us to explore 
new strategies for containing worldwide epidemics, like lockdown strategies, where the contacts 
among the population are strongly reduced in order to slow down the propagation of the infection. By 
analyzing a classical epidemic model, we explore the impact of lockdown strategies on the evolution 
of an epidemic. We show that repeated lockdowns have a beneficial effect, reducing the final size of 
the infection, and that they represent a possible support strategy to vaccination policies.

Mathematical models of epidemics help us understand how infectious diseases spread, and are useful to create 
scenarios on the likely outcomes of an epidemic, evaluating the effectiveness of public health interventions. In 
particular, such models help us to estimate important epidemiological parameters like the potential growth rate 
of an epidemic (the so-called basic reproduction number R0 ), the total fraction of people that will get infected 
(i.e. the final size r∞ of an epidemic), or the fraction of people to vaccinate in order to stop the epidemic (i.e. the 
herd immunity level r∗ ).

The actual COVID 19 pandemic has placed an heavy burden on health systems and economies, calling for 
more coordinated  actions1,2. Following the spread of COVID19, many countries had no choice but to issue 
stay-at-home orders and other non-pharmacological measures to buy time while a vaccine was developed. Such 
measures, often referred to as “lockdowns”, have never been applied before on such a large scale and their con-
sequences are still subject of investigation. In this paper, by analyzing a classical epidemic model, we explore the 
impact of lockdown strategies on the evolution of an epidemic and show how multiple lockdowns could reduce 
the final size of the infection, thus representing a possible support strategy to vaccination policies when vaccines 
are either scarce or not yet available.

Results
Among the models for epidemics, SIR models are often used for their simplicity. In such models, the population 
is divided into groups called compartments corresponding to different stages of an infection. In particular, S 
corresponds to susceptible individuals (i.e. people who can develop the disease), I to infectious (i.e. people who 
have developed the disease and can infect others) and R to recovered individuals. SEIR models are also often 
used; they are derived from SIR by introducing an extra class E corresponding to exposed individuals who have 
contracted the disease but are not yet infectious. We will indicate as “infected individuals” either the class I of the 
SIR model or the joint classes E + I of the SEIR model. Introducing additional compartments can help to take 
account of other events like loss of immunity, births, deaths, healthy  carriers3. We will indicate with lowercase 
letters (i.e. s, i, e, r) the fractions of individuals in a given class. For S(E)IR models, recovered individuals are 
considered to be immune to the disease; hence, a vaccination strategy aims to enlarge the fraction r of immune 
individuals beyond the herd immunity threshold r∗ ("Methods"  section).

Let’s consider the case of a newborn epidemic: its evolution in the r − ln s plane corresponds to a straight 
line (Eq. 3) that starts from a population of fully susceptible individuals (i.e. s0 = 1, r0 = 0 ); the epidemic ends 
when such curve intersect the “end of epidemic boundary” ln s� (Eq. 4). As shown in "Methods" section, the 
intersection point P∞ = (r∞, s∞) is stable (i.e. no epidemic outburst are possible) since the final size r∞ of the 
epidemic is strictly greater than the herd immunity threshold r∗ = 1−R

−1
0  . To give a flavour of the difference 

between letting an epidemic freely evolve against vaccinating a population, let’s consider the case R0 = 3 —a 
value that has been estimated for COVID19 in  France4 ; with such a basic reproduction number, at the end of the 
epidemic a percentage of r∞ = 94% individuals would have been infected, while only r∗ = 67% are needed to 
reach herd immunity. Thus, vaccination is a much better option, since letting the epidemic evolve freely always 
go beyond the epidemic threshold (see Fig. 1).

What happens if no vaccine is available yet, or if there is an insufficient amount to reach at least the epidemic 
threshold? A possible solution is to mitigate the epidemic spread by reducing social contacts among the people 
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via so-called “lockdowns”. Lockdown strategies are one of the possible non-pharmaceutical interventions that 
try to minimize the number of infected while buying time for the production of vaccines; in the case of the 
recent COVID19 pandemic, this approach has been forced by the necessity of not overloading intensive care 
units. Trying to minimize the number of infections leads to a final state at the end of a lockdown that could be 
unstable due to the lack of a sufficient number of recovered individuals. In such a case, the population will be 
susceptible to a new outbreak when lifting the lockdown measure. Thus, the epidemic would eventually spread 
again and a new lockdown would have to be enforced until either the final state becomes stable or a vaccination 
campaign takes in. To illustrate such a mechanism, we depict in Fig. 2 an idealised case where, for an epidemic 
with basic reproduction number R0 = 3 , the lockdown strategy takes in by reducing the reproduction number 
to R lock

0 = 0.7 (a value in the range observed for COVID19 non-pharmacological  interventions5) whenever the 
number of infectious individuals hits the 10% of the population (here we are assuming that, as in COVID19, only 
a small fraction of infectious individuals needs intensive care). With these parameters, if no vaccine is found, the 
epidemic stops after 2 lockdowns and 3 outbreaks, when the fraction of recovered individuals reaches the 76% of 
the population (see Fig. 2): a value that is less than the size of epidemics r∞ = 94% (i.e. the one reached in absence 
of any intervention), but bigger than the epidemic threshold r∗ = 67% . In general, since Eq. (3) intersects the 
“end of epidemic” boundary (Eq. 4) at fraction of recovered that is a strictly increasing function of the epidemic 
starting point r0 , multiple lockdowns will always stop with a fraction of recovered individuals less than the final 
size r∞ but greater than the herd immunity threshold r∗.

As shown in “Methods” section, once the lockdown hits the “end of epidemic” boundary, an epidemic can 
start if and only if R0 > (1− r)−1 ; i.e., the critical value of the basic reproduction number becomes bigger than 
one. As an example, at the point B of Fig. 2 (i.e. after the first lockdown), an epidemic can start only if the basic 
reproduction number is > 1.31 , while at the point D (i.e. after the second lockdown) it can start only if the basic 
reproduction number is > 1.92 . Thus, if we consider the reduction of social contacts in the scenario depicted 
by Fig. 2, we see that while at the beginning of the epidemic a reduction of 67% of social contact is needed, after 
the first lockdown (point B) a reduction by 57% suffices, and after the second lockdown (point D) is sufficient 
an even milder reduction by 37%.
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Figure 1.  Unconstrained dynamics of S(E)IR epidemics. Horizontal axis: fraction r of recovered (immune) 
individuals; vertical axis: fraction s of susceptibles (logarithmic scale). The thick concave curve represents 
the “end of epidemic” boundary where no infectious individuals are present; the red dashed part of the curve 
represents unstable points, while the stable boundary is in blue. The thick green line (a straight line of slope 
−R0 , see Eq. (3) represents an epidemic outburst from the initial state r = 0 , s = 1 where all individuals are 
susceptible; the arrow indicates the direction in which the epidemic evolves with time. The epidemic stops 
when reaching the “end of epidemic” boundary at the final size r∞ ; in general, r∞ > r∗ (see "Methods" section). 
In the figure, R0 = 3 and the unconstrained epidemic reaches r∞ = 94% , a value well beyond the herd 
immunity threshold r∗ = 67% . Vaccination—if available—is a much better option than letting the epidemic 
unconstrained.
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Discussion
Lockdowns are novel measures to contain large scale epidemics in absence of—and waiting for—vaccines. As 
pointed out by the WHO, “these measures can have a profound negative impact on individuals, communities, and 
societies by bringing social and economic life to a near stop” (Coronavirus disease (COVID-19): Herd immunity, 
lockdowns and COVID-19, accessed 21 Jan 2021). In fact, it has been shown that mobility restrictions associ-
ated with lockdowns not only have economic and social  consequences6, but also impact on international  trade7: 
already in May 2020, a World Bank Policy Research Working Paper suggested that non-pharmacological interven-
tions had led to a decline of about 10% in the economic activity across Europe and  Asia8. Non-pharmacological 
interventions are proving extremely costly also in terms of mental health, both for health  professionals9 and 
for the general  population10, possibly with long term  consequences11. Thus, it is important to reach a general 
understanding of lockdowns’ dynamics—especially when lockdowns recur more than once. To such an aim, 
coordinated inter-disciplinary approaches building up on data-driven scientific communities are  welcome12.

One of the most controversial issues of the COVID19 pandemic has been the idea of reaching herd immu-
nity by letting the epidemic evolve. Even assuming that recovered individuals are immune to reinfection (an 
assumption that is strongly challenged by medical  data13, which suggest that even recovered individuals can be 
 infectious14), the toll on the population would be too high due to the high mortality rate: for COVID-19 herd 
immunity by infection is not an  option15, but a false  promise16. Moreover, when the fraction of recovered indi-
viduals reaches to the herd immunity level in an unconstrained epidemic, the number of infected individuals 
is not zero; hence, without restrictive measures and/or vaccination policies, the final toll of an epidemic will be 
always higher than what is needed, since it maximizes the  overshoot17 beyond the herd immunity (see Sect. 4). 
To such an end, the policies adopted in Sweden with respect to COVID-19 represent an  enigma18.
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Figure 2.  Schematic dynamics of a lockdown strategy for a S(E)IR epidemic. Horizontal axis: fraction r of 
recovered (immune) individuals; vertical axis: fraction s of susceptibles (logarithmic scale). The thick concave 
curve represents the “end of epidemic” boundary where no infectious individuals are present; the red dashed 
part of the curve represents unstable points, while the stable boundary is in blue. The black dotted concave curve 
corresponds to a fraction of 10% of the population being infected. In the picture, we show a simple strategy 
that contains an epidemic with basic reproduction number R0 = 3 by lockdowns that reduce the reproduction 
number to R lock

0
= 0.7 whenever the fraction of infectious individuals hits the alert threshold θ = 10% . The 

evolution of unconstrained and “locked down” epidemics are represented by straight lines ending with arrows. 
Lockdowns corresponds to the segments AB and CD ; since, for the parameter chosen, their ending point B, 
D belong to the unstable boundary (i.e. r < r∗ ), the epidemic will start again when the lockdown is lifted. The 
process of unconstrained epidemics and lockdown interventions repeats again until a final point beyond herd 
immunity is reached. For the chosen parameters, the epidemic stops when hitting the stable boundary at the 
point E where the fraction of recovered individuals is rE = 76% of the population, less than the size r∞ = 94% 
of the unconstrained epidemic (see Fig. 1), but still higher than the herd immunity threshold r∗ = 67% . Again, 
vaccination—if available—is a better option.
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While many numerical and data-driven investigations have explored the impact of  lockdowns19, a general 
understanding of their consequences—especially when lockdowns recur more than once—is yet to be reached. 
The possibility that, due to the strong social contact restrictions, lockdowns would have to be re-enacted more 
than once, was clear since the beginning of the COVID19  epidemic20: in fact, at the end of July 2020 it had already 
been assessed that no country had yet seen infection rates sufficient to prevent a second wave of  transmission21. 
We have shown that repeated lockdowns decrease the final toll of an epidemic from the size of the “free“ epidemic 
r∞ to a value nearer to the herd immunity level r∗ ; in general, repeated lockdowns will end with a total fraction 
of infected individuals between these two values.

An important issue to be addressed is the heterogeneity of the population: it has been shown that taking 
into account heterogeneity can both enhance the effectiveness of lockdown  policies20 and positively influence 
the herd immunity  level22; to such an aim, it is important to infer high-resolution human mixing patterns for 
disease  modelling23. However, although heterogeneity can enhance the severity of an epidemic due to super-
spreaders24, it not expected to change qualitatively the scenarios depicted by S(E)IR models but in the case of 
extreme  heterogeneity25.

Finally, we have shown that, at the end of each lockdown, the critical value of the basic reproduction number 
above which an epidemic can start increases, bringing thus the population in a state where milder and milder 
measures are needed to prevent an outbreak. It has been suggested that the behavioural response to an outbreak 
of a severe disease can induce the contact rates to decrease with  time26; consistently, it has been observed that 
changes in the mixing patterns of a population during and after lockdown can decrease R0

27. Thus, it could be 
the case that mild non-pharmacological interventions (like wearing masks or implementing network-based 
 lockdowns28,29 to avoid the pitfall of super-spreaders25) with a lower impact on the economy of a country (or 
on the mental health of its inhabitants) could be used to contain an epidemic while waiting for the vaccine or 
while implementing challenging mass vaccination  policies30. In particular, in presence of limited but significant 
amount of vaccines, it would be even possible to use mild lockdown strategies to held the population above the 
lockdown herd immunity threshold (Eq. 6) until sufficient vaccines are produced.

Methods
In terms of the fractions s,i,r of susceptible, infectious and recovered individuals, the SIR model is described by 
a set of deterministic differential equations:

where the transmission coefficient β is the rate at which a susceptible individual becomes infected upon meeting 
an infectious individual, and γ is the rate at which infectious individuals are removed from the infection cycle. 
In the SEIR model

the dynamics of the exposed fraction e is introduced; here µ is the rate at which exposed individuals become 
infectious.

Since for both models ∂t s = −(β/γ )s∂t r , we have that ∂t ln s = −R0∂t r , where R0 = β/γ is the so-called 
basic reproduction number. Thus, the evolution of the s can be expressed just in terms of r as

showing that S(E)IR epidemics are straight lines of slope −R0 in the r − ln s plane. The time dependence of such 
trajectories can be recovered by inverting parametric solutions of the  model31.

The analysis of phenomenological models based on the renormalization group approach applied to recurrent 
COVID19  waves32 have shown that time dependent parameters are useful in describing the ongoing  pandemics33; 
however, variable parameters will not qualitatively change the framework of stability analysis we are going to 
deploy.

Herd immunity. If we indicate with a the fraction of infected individuals (i.e. a = i in SIR and a = i + e in 
SEIR), from Eqs. (1) and (2) derives that in S(E)IR models ∂ta ∝ R0s − 1 , so that for s∗ < R

−1
0  the number of 

infected individuals decreases without creating an epidemic outbreak. The threshold r∗ = 1− s∗ is the so-called 
herd immunity threshold; vaccination policies aim precisely to immunize a fraction of the population greater 
than r∗ . Notice that, during an epidemic, the fraction of infected individuals reaches the maximum at s = s∗ 
since at this point ∂ta = 0.

An epidemic burst ends when the fraction of infectious is zero, corresponding to the condition s + r = 1 . 
Thus, in the r − ln s plane, the final size of an epidemic corresponds to the intersection of the straight line 
described by (Eq. 3) with the “end of epidemic” boundary curve

that is a concave, strictly decreasing function of r since slope ∂r ln s� = −1/(1− r) is also a strictly decreasing 
function of r. However, such points are stable only if r > r∗.

(1)
∂t s = −βsi

∂t i = βsi − γ i

∂t r = γ i

(2)

∂t s = −βsi

∂t e = βsi − µe

∂t i = µe − γ i

∂t r = γ i

(3)ln s = ln s0 −R0 · (r − r0)

(4)ln s� = ln (1− r)
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An epidemic ends at a point (send , rend) that is the rightmost intersection of Eq. (3) with the boundary; since 
rend accounts for the fraction of people that have been infected, it is also called the epidemic  size34. The point 
P∗ = (s∗, r∗) separates the unstable from the unstable part of the “end of epidemic” boundary; at this point the 
slope is −R0 . Since ln s� is strictly concave, P∗ is the farthest point to any straight line of slope −R0 in the ln s − r 
plane, i.e. from any unconstrained dynamics (see Eq. 3). Thus, any unconstrained dynamics will end in a point 
with r > r∗ that is therefore stable.

Among all the free dynamics starting from the unstable part of the “end of epidemic” boundary (i.e. r < r∗ ), 
the one starting from the “natural” initial state r0 = 0 , s0 = 1 (i.e. all individuals are susceptible) ends at the point 
(s∞, r∞) with the highest fraction of recovered individuals, i.e. it is the epidemic that accounts for the highest 
epidemic size.

Lockdowns. While vaccination is the optimal response to an epidemic, recent events have obliged to explore 
new strategies for containing worldwide epidemics via lockdown strategies, where the contacts among the popu-
lation are strongly reduced in order to slow down the propagation of the infection. Lockdown strategies are 
non-pharmaceutical interventions exploiting the fact that the transmission coefficient β can be thought as the 
product C� of a contact rate C (related to social habits and interactions) times a disease-dependent transmis-
sion probability � . A lockdown strategy aims to decrease the contact rates, resulting in a S(E)IR dynamic with a 
reduced basic reproduction number R lock

0 < R0 . A natural measure of the lockdown strength is the parameter 
δlock

that is can be interpreted as the decrease of contact rates needed to reach a given lockdown level.
For S(E)IR dynamics, a lockdown corresponds to a straight line of slope −R

lock
0  in the r − ln s plane. Follow-

ing the same reasoning of "Herd immunity" section, such dynamics will intersect the boundary beyond a point 
r
∗

lock
= 1− 1/R lock

0  . Since r∗
lock

< r∗ , a lockdown dynamics can end with a fraction rend of immune individuals 
that is unstable respect the unconstrained epidemics, i.e. r∗

lock
≤ rend ≤ r∗ . In such a case, releasing the lockdown 

can result in a new epidemic outburst.
A vaccination policy aims to bring the fraction of recovered individuals above the herd immunity threshold r∗ 

by inoculating vaccines and avoiding the people experiencing a dangerous disease course. However, r∗ normally 
corresponds to an high fraction of the population: for new-born epidemics, it can be the case that it is not possible 
to produce enough vaccine before the epidemic ends. Let’s assume that, by non-pharmaceutical interventions, 
epidemic has been dampened out and that an amount of vaccines of efficacy ǫ < 1 useful to immunize a fraction 
v of the population has been produced; however, let’s also assume that the vaccines produced are not sufficient 
to reach herd immunity threshold since ǫv < r∗ . It it possible to imagine to introduce a lockdown that reduces 
the herd immunity threshold to available vaccination capabilities, i.e. r∗

lock
= ǫv ? This goal can be accomplished 

by noticing that for a lockdown implements a given herd immunity threshold r∗
lock

 if R lock
0 = 1/(1− r

∗

lock
) ; 

thus, indicating with R vax
0  the lockdown level corresponding to a vaccine immunization of a fraction v of the 

population, we have that R vax
0 = 1/(1− ǫv) . Thus, the strength δvax of a lockdown to reach herd immunity in 

presence of partial vaccination is
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