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The use of biomedical SNP markers of diseases can improve effectiveness of treatment. Genotyping of patients with subsequent
searching for SNPs more frequent than in norm is the only commonly accepted method for identification of SNP markers within the
framework of translational research. The bioinformatics applications aimed at millions of unannotated SNPs of the “1000 Genomes”
can make this search for SNP markers more focused and less expensive. We used our Web service involving Fisher’s Z-score for
candidate SNP markers to find a significant change in a gene’s expression. Here we analyzed the change caused by SNPs in the gene’s
promoter via a change in affinity of the TATA-binding protein for this promoter. We provide examples and discuss how to use this
bioinformatics application in the course of practical analysis of unannotated SNPs from the “1000 Genomes” project. Using known
biomedical SNP markers, we identified 17 novel candidate SNP markers nearby: rs549858786 (rheumatoid arthritis); rs72661131
(cardiovascular events in rheumatoid arthritis); rs562962093 (stroke); rs563558831 (cyclophosphamide bioactivation); rs55878706
(malaria resistance, leukopenia), rs572527200 (asthma, systemic sclerosis, and psoriasis), rs371045754 (hemophilia B), rs587745372
(cardiovascular events); rs372329931, rs200209906, rs367732974, and rs549591993 (all four: cancer); rs17231520 and rs569033466
(both: atherosclerosis); rs63750953, rs281864525, and rs34166473 (all three: malaria resistance, thalassemia).

1. Introduction

Biomedical SNP (single nucleotide polymorphism) markers
are significantly frequent differences of personal genomes
of patients from the reference human genome, hgl9. The
discovery of SNP markers of hypersensitivity to the HIV-1
reverse transcriptase inhibitor Ziagen in the HLA-B gene of
the human major histocompatibility complex [1] prevented
deaths of thousands of patients. That is the reason why a
search for candidate SNP markers of diseases now represents
the bulk of bioinformatics studies aimed at the development
of so-called postgenomic predictive preventive personalized
medicine, PPPM [2].

In the 20th century, discovery of SNPs and of the
resulting associations with diseases was casual, whereas the
postgenomic search for SNPs is systematic and large-scale:
it includes the largest worldwide project “1000 Genomes”
[3]. Researchers maintaining the dbSNP database [4] accu-
mulate and annotate proven SNPs and continuously refine
the human reference genome (hgl9), namely, the ancestral
variants for all SNPs within the Ensembl [5] and GENCODE
v. 19 [6] databases available from the public UCSC Genome
Browser [7]. The biomedical databases GWAS (genome-wide
association study) [8], OMIM [9], ClinVar [10], and HapMap
[11] supplement these SNPs by documenting associations
with diseases, with one another, and with the pathogenic



haplotypes (e.g., [12]). Furthermore, researchers project these
SNPs onto the whole-genome maps of genes, protein-binding
sites on DNA predicted in silico and/or detected in vivo using
chromatin immunoprecipitation (ChIP), interchromosomal
contacts, and nucleosome packaging as well as transcrip-
tomes in health [13] and disease in different tissues [14] and
after treatment [15]. Accordingly, the available Web services
(e.g., [16-27]) facilitate the bioinformatics search for relevant-
to-medicine candidate SNP markers in terms of ranking of
unannotated SNPs by their similarity to known biomedical
SNP markers, according to projections of these SNPs onto
the whole-genome maps. The Central Limit Theorem means
[28] that the accuracy of such a search should increase
asymptotically with an increase in accuracy, volume, repre-
sentativeness, completeness, the number, and diversity of the
whole-genome maps as well as due to refinement of empirical
analyses of similarity between projections of SNPs onto
genomic maps [16]. This way, the best research progress has
been achieved for many thousands of SNPs within protein-
coding regions of genes [9] due to the invariant types of dis-
ruption in both structure and function of the affected proteins
regardless of the cellular conditions [29]. At the same time,
the worst research progress has been made for a few hundred
of so-called regulatory SNPs [4, 9, 23, 24] because their
manifestations are dependent on cellular conditions [30].

For the present study, it was helpful that an intermediate
position between these extremes belongs to SNPs in the DNA
sites binding to the TATA-binding protein (TBP); these SNPs
constitute ~10% of all the known regulatory SNP markers
relevant to medicine, whereas TBP is only one of 2600 known
DNA-binding proteins in humans [31]. The above-mentioned
special place of such SNPs can be mostly explained by the
necessity of a TBP-binding site within the [-70; —20] region
of the promoter for any mRNA [32] because RNA polymerase
II binds to the anchoring complex TBP-promoter, and this
event triggers assembly of the transcription preinitiation
complex for this mRNA [33]. These results were obtained in
studies on unviability of TBP-null animals [34] or animals
harboring a knockdown [35] of the TBP gene. Besides, ChIP
data confirmed that the TATA-like motifs are the TBP-
binding sites in gene promoters in yeast [36] and in mice
[37], as did the results of in silico analysis and their selective
verification by means of in vivo bioluminescence among
human genes [38]. Finally, SNPs in the TBP-binding sites
invariantly cause gene overexpression in relation to SNP-
caused enhancement of the TBP/promoter affinity as well as
the deficient expression of genes as a result of an SNP-caused
reduction in this affinity regardless of any cellular conditions;
these phenomena have been repeatedly demonstrated in
independent experiments [39-41]. This stability of the SNP-
caused alterations in the TBP/promoter-affinity resembles the
invariant relation of SNPs in protein-coding gene regions
with protein structure/function, rather than such relations
involving regulatory SNPs, whose effects strongly depend on
the tissue, cell type, and so forth.

In our previous studies, we measured in vitro affinity
values of TBP for the representative sets of aptamers of
synthetic single-stranded DNA (ssDNA) [42] and double-
stranded DNA (dsDNA) [43] including natural TBP-binding
sites of human gene promoters [44] that are stored in our
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database ACTIVITY [45]. Next, we derived formulas for in
silico prognosis of the TBP-ssDNA [46], TBP-dsDNA [43],
and TBP-promoter [47] affinity using the widely accepted
Bucher’s criterion [48] for the canonical TBP-binding sites,
the so-called TATA box (synonyms: Goldberg-Hogness box
and Hogness box [32]), in the three-step mechanism of
the TBP binding to a promoter [47]. This mechanism was
observed independently in vitro a year later [49]. Then we
confirmed predictions of this three-step empirical predictive
bioinformatics model [47] at equilibrium [50], without equi-
librium [51], and in real time [52, 53] in vitro. Additionally,
we compiled a set of SNPs in the TBP-binding sites associated
with human diseases [54], including the AIDS pandemic [55],
and with commercially important traits of plants and animals
[56]. Then, we confirmed the three-step predictions by means
of these SNPs [57] and by means of transcriptomes of the
human brain [58], the auxin response in plants [59, 60], and
the data from 68 independent experiments (for review, see
[61]). To finalize this comprehensive verification of the three-
step model of TBP binding to a promoter [47, 49], we created
a freely available Web service [62] for users who wish to apply
this bioinformatics application to data on the TBP/promoter-
complexes in humans: http://beehive.bionet.nsc.ru/cgi-bin/
mgs/tatascan/start.pl.

In this work, we updated our review of SNPs (in the TBP-
binding sites) associated with human diseases [54] using
the standard keyword search, using existing data from the
literature [63], in NCBI databases [4] and provide examples
on how to use our Web service [62] to find a significant
change in a gene’s expression when this change is caused by
the regulatory SNP in this gene’s promoter via a change in the
TBP affinity for the promoter. Using a representative set of so-
called control data on the total number of 62 SNPs, we show
the output of our bioinformatics applications. Using this
approach, for the known SNP markers relevant to medicine,
we present 17 novel candidate SNP markers that are located
nearby, namely, rs549858786 of the IL1B gene (associated with
rheumatoid arthritis), rs63750953 and rs281864525 (both:
HBB; malaria resistance and p-thalassemia), rs34166473
(HBD; malaria resistance and &-thalassemia), rs563558831
(CYP2B6; better bioactivation of cyclophosphamide),
rs372329931 (ADH7; esophageal cancer), 1s562962093
(MBL2; stroke, preeclampsia, and variable immunodefi-
ciency), rs72661131 (MBL2; cardiovascular events in
rheumatoid arthritis), rs17231520 and rs569033466 (both:
CETP; atherosclerosis), rs55878706 (DARC; low white-
blood-cell count and resistance to malaria), rs367732974
and 15549591993 (both: F7; progression of colorectal
cancer from a primary tumor to metastasis), rs572527200
(MMPI12; low risks of asthma, systemic sclerosis, and
psoriasis), rs371045754 (F9; Leiden hemophilia B),
rs200209906 (GSTM3; brain, lung, and testicular cancers),
and rs587745372 (GJA5, arrhythmia and cardiovascular
events). This is the principal result of this work.

2. Methods

2.1. Web-Service SNP_TATA_Comparator. Web service SNP_
TATA_Comparator http://bechive.bionet.nsc.ru/cgi-bin/mgs/
tatascan/start.pl [62] is a bioinformatics application installed
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FIGURE 1: How to use the Web service SNP_TATA_Comparator [62] to find a significant change in gene expression caused by SNPs of this
gene’s promoter via a change in affinity of the TATA-binding protein (TBP) for this promoter in the cases of (a) a known biomedical SNP
marker and (b) a nearby candidate SNP marker. Solid, dotted, and dashed arrows are the gene, transcript, and sequence lists, respectively,
from Ensembl [5] and GENCODE [6] databases of the reference human genome, hgl9. Dash-and-dot arrows are an estimate of the statistical
significance (Z-score, p value) of deviation of the gene expression in patients carrying minor alleles, relative to the ancestral allele, (1)-(4)

and Algorithm 1.

on the hybrid cluster supercomputer HKC-30T (Hewlett Pack-
ard, Palo Alto, CA, US) based on the Intel Xeon 5450 platform
of 85-Ttlop performance under OS Red Hat Enterprise Linux
5.4 that is supported by the Siberian Supercomputer Center
(Novosibirsk, Russia).

One can see screenshots of the user interface of this soft-
ware in Figure 1 and all the data flowcharts (arrows) between
them and two databases Ensembl [5] and GENCODE v. 19
[6] of the human reference genome, hgl9, in Figure 1(a).
Using the standard method, we encoded this interface in the
dynamic programming language JavaScript and created these
flowcharts by means of the BioPerl toolkit [64]. Using the
online mode of these modules, a user can prepare input data
for the executable applet encoded primarily in the program-
ming language C of the ANSI standard and, then, run this
applet (the “Calculate” button). These input data consist of
two variants—ancestral (the “Base sequence” window) and
minor (the “Editable sequence” window)—of the 90 bp DNA
sequence {s_gy---s;-+-s_;} in the proximal core-promoter
region 1mmed1ately upstream of the transcription start site
(TSS, s,) of interest within the human reference genome, hgl9
(where s; € {a,c, g,t}). One can find our description of the
bioinformatics model of this executable applet within the next
Section 2.2.

One more example of the output data from the above-
mentioned executable applet is shown within the two top
lines of the “Result” window in Figure 1(b). These data
include the maximum value, —In(Kp) + &, among all the
possible estimates of the TBP binding affinity for the 26 bp
DNA fragment, {s;_;5 - s; - - - ;.1 at the ith position ranging
from -70 to -20 for both DNA chains [32, 59]. Here, K, is
the equilibrium dissociation constant (expressed in the units
of mol per liter; M) of the TBP binding to the ancestral or
minor allele of the promoter under study. These quantitative
estimates of the SNP-caused change in the TBP-promoter
affinity are the input data for another executable applet coded
primarily by means of the standard statistical package in the
R software. We provided examples of its output data within
the bottom line of the “Result” window in Figure 1. These are
Fisher’s Z-score value along with its probability rate, p (where
a = 1 — p, statistical significance). Within the “Decision”
line, one can see the prediction made by our Web service,
namely, (i) “excess” for overexpression of the gene after the
SNP-caused significant increase in the TBP binding affinity
for the minor allele of the gene promoter or (ii) “deficiency”
for lowered expression of this gene in the opposite case. This
prediction is the main result of the proposed Web service
[62].
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IF {~In(Kp\nor) is statistically significantly greater than — In(Kp, xncestrar)}s
THEN {DECISION is “there is an excess of the minor allele of a given gene versus the ancestral allele”};
ELSE [IF {~In(Kpynor) i statistically significantly less than — In(Kpsncpstrar)}s
THEN {DECISION is “there is a deficiency of the minor allele of this gene versus the ancestral allele”}];
OTHERWISE {DECISION is “alteration of the expression of this gene is insignificant”}.

ALGORITHM 1

2.2. The Bioinformatics Model. 'The bioinformatics model that
we use here is the three-step approximation of the TBP
binding to the [-70; —20] region of the core-promoters of
eukaryotic genes; this approximation was first suggested by
us [47] on the basis of our original experimental data [42-
44] and, then, this three-step approximation was discovered
independently [49] a year later. Within the framework of this
model, (i) TBP binds nonspecifically to DNA and slides along
this molecule « (ii) the sliding of TBP stops at a proper TBP-
binding site <> the DNA helix bends from the 19° angle to the
90" angle [65] and stabilizes the local TBP-promoter complex.
This interaction (binding affinity) can be estimated using the
following empirical equation:

-In(Kp)
=10.9

= 0.2 {In (Kg1pg) + In (Kgrop) + In (Kggxp) >

where 10.9 (In units) is nonspecific TBP-DNA affinity 107> M
[66], 0.2 is the stoichiometric coefficient [47], and Kgpop is
the maximal score value of Bucher’s position-weight matrix,
which is the commonly accepted criterion of the TATA box:
the canonical form of the TBP-binding site [48].

In (1), Kg ipg is our empirical estimate of the equilibrium
constant of the TBP sliding along DNA that was determined
experimentally [67]; namely,

@)

—In (Kgipg) = MEAN 5, {0.8 [TA]3rarr

2
- 3.4 MinorGrooveWidthpyrpr — 35.1},

8:

(Z1siszsz£e{a,c,g,t} [ln (KD ({5913 e Si+j—1€si+j+1 "

where [TA];yarr i the total number of instances of dinu-
cleotide TA within the 3'-half of the DNA sequence treated;
MinorGrooveWidthypgion 18 the mean width of the minor
groove of the B-form of the DNA helix [68]; 0.8, —3.4,
and —35.1 are linear regression coefficients determined by
means of our experimental data [43] stored in our database
ACTIVITY [45]; MEAN; 5}, is the mean arithmetic value for
all possible positions and orientations of the TBP-binding site
(15 bp long) that was determined empirically [67].

In (1), Kggnp is our empirical estimate of the equilibrium
constant at the DNA helix bending step on the basis of
the macromolecular dynamics computations [65] describing
how TBP can bind to DNA; namely,

—In (KBEND) = MEAN 147 pox {0-9 [WR]pLank

+2.5 [TV]cpnrer + 144},

where WR = {TA, AA, TG, AG} and TV = {TA,TC, TG}
[46] (the TUPAC-IUB nomenclature [69]); 0.9, 2.5, and
14.4 are linear regression coefficients calculated from our
experimental data [42] stored in our database ACTIVITY
[45]; MEAN oTA box 1S the mean arithmetic value for both
DNA strands of the TBP-binding site at the position of the
maximal score value of Bucher’s position-weight matrix [48].

Additionally, the standard deviation of the —In[Kp]
estimates (see (1))—for all the 78 possible mononucleotide
substitutions, s;,; — ¢, at each jth position (=13 < j < 12;
3%26) within the 26 bp DNA window centered by ith position
of the promoter DNA analyzed—was heuristically estimated
as

1/2

'SHIZ}) /Kp ({5;;13 ©Sinj-1SijSivjel "5i+12}))2]) (4)

This equation (4) estimates the resistance against the
majority of SNPs in the case of the biologically essential
complex of TBP binding to the TBP-binding site of the
promoters [55].

Finally, the results of (1)-(4) on the promoter DNA
sequences of two minor and ancestral alleles of a given gene
are compared with one another in terms of Fisher’s Z-score
and its probability rate, that is, the p value (Wherea =1 - p
is the statistical significance level). On this basis, a decision is
made.

78

For each SNP processed, the decision (Algorithm 1) is the
main result of the bioinformatics model used.

2.3. How to Use SNP_TATA_Comparator. Practical use of our
Web service [62] is illustrated in Figure 1 and documented
in Tables 1-3. In this work, we analyzed in silico 31 human
genes containing 40 known biomedical SNP markers in their
core-promoter from our review [54], which was updated in
the present work. Using the UCSC Genome Browser [7],
we found 163 additional unannotated SNPs nearby that were
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detected in the “1000 Genomes” project [3]. Thus, the total
number of the DNA sequences processed was 203.

We used the ancestral variants of these SNPs from
Ensembl [5] using the GENCODE v. 19 [6]; we also con-
structed their minor alleles by hand in “online real-time”
mode according to the dbSNP entries [4] and/or literature
sources in the case of the SNPs undocumented in this
database as shown in Figure 1 and in Tables 1-3. We analyzed
each of the 203 SNPs independently from one another. As a
result, for most of the unannotated SNPs analyzed, we found
insignificant changes in TBP affinity for human promoters:
142 0f 163 or 90% of SNPs (data not shown).

Finally, the remaining 17 of the 163 unannotated SNPs
(10%) appeared to be new candidate biomedical SNP markers
near the existing markers. We italicized and labeled them
with the marks “hypothetical” and “this work” in Tables 1-
3. We found associations of both known and possible nearby
SNP markers with the same human diseases in the case of
their codirectional effects on gene expression; otherwise, we
did an additional keyword search [54, 63] in NCBI databases
[4] and recorded the results below the above-mentioned
marks “hypothetical” and “this work.” These 17 new candidate
biomedical SNP markers are the main result of the present
study on how to use the proposed Web service [62] in
practice.

3. Results

3.1. The Results on Seven Known Biomedical SNP Markers That
Increase TBP Affinity for Human Gene Promoters. The results
on seven known biomedical SNP markers that increase
TBP affinity for human gene promoters are presented in
Table 1. The most widely studied among them is rs1143627,
a substitution of minor T for ancestral C at position —31
(hereafter denoted as —31C — T) in the core-promoter for
transcript number 2 of the human ILIB gene (interleukin 13).
Let us analyze it in detail so that we can later briefly describe
the rest of our SNPs on the basis of this example.

As one can see in Table 1, this SNP transforms a non-
canonical TBP-binding site to the canonical TATA-box,
namely, gaaagC_;; ATAAAAcag — gaaagT_;; ATAAAAcag.
Obviously, the minor allele —31T can significantly increase
TBP affinity for the ILIB promoter relative to the ancestral
one, —31C. According to (1)-(4) and Algorithm 1, their esti-
mate K, =2nM (Table 1), in the case of —31T, is significantly
greater (Z-score = 14.56, &« < 107°) than K, = 5nM in
case of —31C. According to three independent empirical
studies [39-41], this significant increase in TBP affinity for
the minor variant of the ILIB promoter corresponds to
overexpression of this gene (designated as T in Tables 1-3).
This prediction is consistent with clinical findings: overex-
pression of interleukin 1f in gastric cancer with Helicobacter
pylori infection [10, 70], in hepatocellular carcinoma with
infection by hepatitis C virus [71], in non-small cell lung
cancer in smokers and during alcohol dependence [72], as
well as in nonneoplastic chronic gastritis and gastric ulcer
[73], in intractable Graves autoimmune disease [74], and
even in a neurodegenerative disorder during major recurrent
depression [75]. Thus, the prediction by the Web service [62]

(see (1)-(4) and Algorithm 1) is consistent with a number of
independent clinical studies [70-75].

Using the UCSC Genome Browser [7], we found the
unannotated SNP rs549858786 (—28A — T) positioned 4 bp
downstream of the above-mentioned known SNP marker
rs1143627 (-31C — T). As one can see in Figure 1(b), our Web
service [63] predicts (see (1)-(4) and Algorithm 1) the affinity
of TBP for the minor allele —28T of the promoter analyzed:
7nM (Table 1); this result is significantly less than the norm:
5nM (Z-score = 7.63, « < 107%). According to some studies
[39-41], this significant decrease in TBP affinity for the
ILIB promoter corresponds to an interleukin 13 deficiency
in patients. Because the known SNP marker rs1143627 and
the unannotated SNP rs549858786 have opposite effects
(relative to each other) on ILIB expression, we performed
an additional keyword search for [54, 63] “interleukin 1
deficiency” as a biochemical marker relevant to medicine in
the NCBI databases [4]. The result is shown in Table 1 and
represents experimental findings [76] in a murine model of
human rheumatoid arthritis, which showed an association
of the interleukin 1f deficiency with a high risk of this
autoimmune disease. Within the framework of this animal
model of the human disease [76], we propose rs549858786 as
a candidate SNP marker of an increased risk of rheumatoid
arthritis. This is the first novel finding in the present study.

Furthermore, the ILIB promoter under study contains
one more unannotated SNP rs4986962 (—67G — T) [3, 4]
that was predicted by our Web service [62] to insignificantly
change TBP affinity for this promoter (data not shown).
Notably, this prediction of (1)-(4) and Algorithm 1 does not
rule out the possible usefulness of this SNP for clinical
practice as a valid SNP marker of some human diseases.
This is because our prediction does not take into account the
influence of this SNP, for example, on the DNA sites binding
to other transcription factors [23, 77], which can be studied
in a different project, for example, using other Web services
[25-27].

As one can see in Table 1, the next known SNP marker
(of myocardial infarction and venous thromboembolism),
rs563763767 (-21C — T) [78], is located within the core-
promoter for transcript number 1 of the F3 gene (coagulation
factor F3; synonym: tissue factor) and has properties that
are similar to those of the above-mentioned basic example.
Using the Web service [62], we predicted the SNP-caused
overexpression of this gene, in agreement with the known
pathogenesis of these cardiovascular diseases [78]. In turn,
the known SNP marker —51T — C within the core-promoter
of the human NOS2 gene (inducible nitric oxide synthase
2) exemplifies the so-called balanced SNPs, which can have
both beneficial (malaria resistance [79]) and adverse effects
(epilepsy risk [80]) on human health. Another type of man-
ifestations of SNPs is illustrated by the known SNP marker
rs10168 (—26G — A) in the human DHFR gene (dihydrofolate
reductase; the main target of methotrexate, which is the key
drug for the treatment of children with acute lymphoblastic
leukemia) [81]. This gene’s overexpression as a result of
—26A causes resistance to the above-mentioned antitumor
drug.



10

The known SNP marker rs10895068 of the human PGR
gene exemplifies the SNP-caused de novo appearance of a spu-
rious TBP-biding site along with the additional pathogenic
TSS at position +270 from the normal TSS for transcript
number 2 of the same gene [82]. This alternative TSS disrupts
the balance between the o and f3 isoforms of the progesterone
receptor encoded by this gene; this aberration doubles the risk
of endometrial cancer in overweight women [82].

Finally, the two bottom lines of Table 1 show two examples
of the known SNP markers of so-called silent SNPs: —20A —
T within the promoter of the human CYP2IA2 gene [83]
and rs111426889, which precedes the alternative TSS located
at position —120 upstream of the major TSS for transcript
number 3 of the TNFRSFI8 gene [84]. These silent SNPs
are useful for monitoring of migration flows and ethnic
composition of regional human subpopulations.

3.2. The Results on 22 Known Biomedical SNP Markers
That Decrease TBP Affinity for Human Gene Promoters. The
results on 22 known biomedical SNP markers that decrease
TBP affinity for human gene promoters are presented in
Table 2. Let us analyze them briefly referring to the above
examples.

Some of these biomedical SNP markers (8 of 22; 36%)
were found within the promoters of two gene-paralogs:
HBB and HBD of f3- and &-hemoglobins. As one can see
in Table 2, all of them are “balanced SNPs” causing both
resistance to malaria and thalassemia [85-96] with only one
exception: substitution —27A — T is of the “silent SNP” type.
In addition, the SNP marker rs2814778 within the DARC gene
is of the same “balanced SNP” type; namely, it is associated
with malaria resistance and a low white-blood-cell count, as
positive and negative effects on human health, respectively
[97].

The known SNP marker rs28399433 (low risk of lung
cancer among smokers) was found here within the human
CYP2A6 gene (nicotine oxidase; synonyms: xenobiotic
monooxygenase, polypeptide 6 of subfamily A of family 2 of
cytochrome p450) [98, 99]. Our Web service [62] predicts
(see (1)-(4) and Algorithm 1) reduced affinity of TBP for the
minor allele of this gene promoter (Table 2). This result is
consistent with empirical studies involving bioluminescence
[98, 99]. In addition, three known SNP markers, rs55999272
in the CRYGEP gene, 152276109 in MMPI12, and 18 bp deletion
within the promoter of CETDB, are associated with a reduced
risk of Coppock-like cataract [100], asthma [101], systemic
sclerosis [102], psoriasis [103], and atherosclerosis [104, 105]
due to the SNP-caused damage to the TBP-binding sites of the
promoters of these genes.

In addition, the known SNP marker rs34223104 within
the core-promoter for the undocumented alternative TSS
(located 48 bp upstream of the major TSS of the CYP2B6
gene) transforms the canonical form (TATA-box) of the TBP-
binding site, 5'-gatgaaatttTATA Acagggt-3', into the C\EBP-
binding site (C\EBP, CCAAT-enhancer-binding protein),
which causes increased bioactivation of the anticancer pro-
drug cyclophosphamide [106]. In this case, our Web ser-
vice [62] predicts damage to this normal TBP-binding site
that is in agreement within the experimentally observed
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transformation of this TBP-binding site into the SNP-caused
C\EBP-binding site [106].

Furthermore, the remaining six known SNP mark-
ers, rs7277748 (SODI) [107], rs1800202 (TPII) [108, 109],
135036378 (ESR2) [110, 111], rs201739205 (HSDI7BI) [112],
rs72661131(MBL2) [113-115], and rs17537595 (ADH7) [116],
including two substitutions, —35A — C (APOAI) [117] and
-33A — C (F7) [118], are of the most frequent and best
understood type of SNP: pathogenic damage to a normal
TBP-binding site. This way, these SNPs can reduce expression
of human genes.

Finally, near these 22 known biomedical SNP markers, we
found and proposed 13 candidate SNP markers: rs63750953
(HBB), rs281864525 (HBB), rs34166473 (HBD), rs55878706
(DARC), 1s572527200 (MMPI2), rs17231520 (CETP),
18569033466 (CETP), rs563558831 (CYP2B6), rs562962093
(MBL2), 1572661131 (MBL2), rs372329931 (ADH?7), rs36773297
(F7), and rs549591993 (F7), as one can see in Table 2. About
a half of them (8 of 13, 62%) have effects on gene expression
that are codirectional with the effects of the nearby known
SNP markers and thus can serve as markers of the same
human diseases (e.g., rs562962093 and rs33931746). For
the other half of the SNPs, we found associations with
appropriate diseases [119, 120] using a keyword search
[54, 63] in NCBI databases [4] (e.g., 1s567653539).

3.3. The Results on 10 Known Biomedical SNP Markers That
Insignificantly Change TBP Affinity for Human Gene Promot-
ers. The results on 10 known biomedical SNP markers that
insignificantly change TBP affinity for human gene promoters
are presented in Table 3. Let us discuss them briefly.

First of all, the known SNP marker rs1394205 (—29G — A)
within the FSHR gene belongs to one of the most important
types of SNP: it causes a frequently occurring disease, for
example, male infertility, and this connection has been
proven clinically regardless of bioinformatic, biochemical,
or any other nonclinical data. As shown in the first line of
Table 3, in terms of this biomedical marker, there are no
differences between fertile men (who are fathers) and infertile
men in Italy [121] and in Turkey [122]. In agreement with these
biomedical findings [121, 122], our Web service [62] (see (1)-
(4) and Algorithm 1) predicts no differences in TBP affinity
for this gene’s promoter between ancestral and minor alleles
of this SNP.

The next four substitutions, —48G — C (F9), —42T — A
(F9), rs16887226 (StAR), and rs28399433 (GHI), are among
the oldest known SNP markers that were discovered by means
of the electrophoretic mobility shift assay (EMSA) before
the advent of the reference human genome, ghl9 [123, 124,
126]. According to these EMSA assays [123, 124, 126], each
of these four SNPs pathologically reduces expression of the
corresponding gene by disrupting the tissue-specific binding
site for a transcription factor rather than by disrupting the
ubiquitous TBP-binding site (they overlap). Additionally,
the next five known SNP markers—rs1332018 (GSTM3),
rs7586110 (UGTIA7), rs10465885 (GJA5), rs35594137 (GJA5),
and rs13306848 (THBD)—have properties similar to those
of the SNPs above, in terms of bioluminescence (LUC)
assays [127-132] instead of EMSA. Here we found six nearby
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unannotated SNPs, rs371045754 (F9), rs544850971 (StAR),
rs200209906 (GSTM3), rs574890114 (UGTIA7), rs542729995
(UGTIA7), and rs587745372 (GJAS5), which can significantly
disrupt the above-mentioned TBP-binding sites and thereby
may cause the same diseases in humans as do the six
candidate SNP markers (Table 3).

Finally, the last two biomedical SNP markers—
rs587745372 and 1s398048306—taken together are the
well-known unique genetic variation in the TBP-binding site
length, A (TA);_gA in comparison with the norm: A (TA),A.
The longest of them, rs587745372, is an integral part of several
haplotypes associated with a high risk of hyperbilirubinemia
and jaundice [133], whereas two shortest ones, rs398048306
and rs200209906, are “silent SNPs” that are used to study
ethnic differences of regional human subpopulations ([12]
and Table 3).

Thus, in the vicinity of the 40 known biomedical SNP
markers within the TBP-binding sites in humans, we first
found 17 candidate SNP markers: rs55878706 (malaria
resistance, low white-blood-cell count), 1562962093
(stroke, preeclampsia, and variable immunodeficiency),
rs563558831 (cyclophosphamide bioactivation), rs549858786
(rheumatoid arthritis), rs372329931 (esophageal cancer),
rs72661131 (cardiovascular events in rheumatoid arthritis),
rs200209906 (brain, lung, testicular, and renal cell
carcinomas), rs572527200 (low risk of asthma, systemic
sclerosis, and psoriasis), rs371045754 (Leiden hemophilia
B), rs587745372 (cardiovascular problems), rs367732974 and
rs549591993 (both: progression of colorectal cancer from a
primary tumor to metastasis), rs17231520 and rs569033466
(both: atherosclerosis), and rs63750953, rs281864525, and
rs34166473 (all three: malaria resistance, thalassemia). This
is the main result of our study.

4. Discussion

Because the mainstream method of searching for candidate
SNP markers is now based on a statistical estimate of the
similarity between the projections of unannotated SNPs and
known SNP markers on various genome-wide maps, here we
simplified the procedure by limiting it to unannotated SNPs
only that are located near the known SNP markers in the TBP-
binding sites of human genes. Within this framework, we
found and analyzed 40 known SNP markers and 163 nearby
unannotated SNPs shown within the first column of Tables 1-
3 below the gene acronyms. The majority of the unannotated
SNPs (153 of 203; 75%) appear to be insignificantly altering
TBP affinity for the core-promoter of the corresponding
gene in humans (data not shown). This prediction of our
Web service [62] seems to be consistent with the commonly
accepted paradigm of genetic stability of the human genome
and with data from EMSA and LUC assays of SNP-caused
pathological disruption of binding sites for tissue-specific
transcription factors rather than disruption of the TBP-
binding site (overlaps them; they constitute the so-called
composite unit [134]; Table 3).

The second most frequent group of SNP markers, 37 of
203 (18%), disrupts TBP-binding sites within core-promoters
of human genes and thereby reduces expression of these
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genes; this deficient gene expression is more often associ-
ated with adverse than beneficial effects on human health.
This finding is in agreement with the commonly accepted
bioinformatics notion that the SNP-caused damage to genetic
information is more frequent than SNP-caused genetic bene-
fits.

The third most frequent group of SNP markers, 13 of 203
(7%), increases the TBP binding affinity for core-promoters
of human genes and, hence, causes overexpression of these
genes. This overexpression can be pathogenic, neutral, or
beneficial for human health at approximately equal probabil-
ities. This finding points to huge diversity of genetic effects
of SNPs within the human genome. Indeed, the remaining
manifestations of SNPs constitute only rare examples, such
as “silent SNPs” (e.g., rs111426889), “balanced SNPs” (e.g.,
rs35518301), a de novo occurrence of a spurious TBP-biding
site (e.g., rs10895068), transformation of a normal TBP-
binding site into another regulatory genomic signal (e.g.,
rs34223104), a change of the composite unit containing the
TBP-binding site (e.g., rs28399433), a deletion of the DNA
fragment either around or inside the TBP-binding site (e.g.,
rs63750953), and a duplication of the DNA fragment inside
the TBP-binding site (e.g., rs34983651).

As for the SNP-caused pathological changes, the majority
(40 of 57; 70%) of the SNP markers of diseases are either
increasing or decreasing the risk of human diseases, whereas
the rare types of SNPs are associated with drug resistance
(e.g., 1510168), prodrug bioactivation (e.g., rs34223104), dis-
ease complications (e.g., rs72661131), and ethnic differences
(e.g., 15398048306 and rs34223104). In addition, 10 of the
17 proposed candidate SNP markers are codirectionally
changing TBP affinity for the core-promoters of human
genes with respect to the nearby known SNP markers,
whereas the remaining 7 candidate SNP markers do so in the
opposite direction. Accordingly, we did additional keyword
searches [54, 63] by hand in NCBI databases [4]. Both of
these observations mean that our Web service [62], when
combined with a manual comprehensive search for keywords
[54, 63] by means of the Web-based information sources, is
most suitable for precise analysis of specific SNPs, genes, and
diseases rather than for a whole-genome search for a wide
range of all possible manifestations of any unannotated SNPs.

In this regard, it should be noted that the statistical
significance of the proposed 17 candidate SNP markers varies
from high confidence (« < 1077) to borderline significance
(¢ < 0.05). In contrast, K values when expressed in
moles (M; representing affinity of TBP binding to the core-
promoter in vitro [50]) vary from 1nM to 62nM, and their
variation among alleles of a given SNP is less than 2% of this
range and thus outside the limits of accuracy of empirical
measurement of K, values, if we are not taking into account
additional information on the expected range of the values
being measured. Thus, the K, values shown in Tables 1-
3 are necessary for prognostic affinity analysis of these 17
candidate SNP markers that we made using the Web service
[62] for the purpose of their empirical verification by means
of sophisticated equipment (e.g., [50-53]).

Finally, our estimates for the 17 candidate SNP markers
(Tables 1-3) are only measures of bioinformatic (Kp-values,
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Z-score, a-value, p value, etc.) and biomedical justification
(last columns in Tables 1-3) for the highly expensive and
laborious verification of SNPs during a search for an SNP
marker that can be validated only by a higher incidence in
patients than in healthy people. What is healthy or normal
depends on ethnic, social, age, and gender composition
of a human subpopulation, the settlement ratio and the
associated migration flows, climate and environment, living
conditions and lifestyle, the technological level of health care
and diagnostic procedures, anamnesis, and treatment history
[135].

5. Conclusions

The use of biomedical SNP markers can improve effectiveness
of treatment and help to develop new medications. The
majority of known SNP markers are located in protein-
coding regions of human genes and have invariant manifes-
tation of disruption in the protein structure and/or function
(e.g., [29]). At the same time, only a minority of known SNP
markers are located in regulatory regions of genes because
their experimental detection is complicated by the tissue-
and developmental-stage-specific variation in binding of a
regulatory protein to the these DNA regions [23, 25, 27, 30,
77]. Nevertheless, the best-studied regulatory SNPs in TBP-
binding sites of human promoters seem to have a lot in
common with the SNPs in protein-coding regions rather than
with the remaining regulatory SNPs. With this in mind, here
we first predicted 17 candidate biomedical SNP markers in
TBP-binding sites of human promoters and confirmed them
using both clinical and basic research of other investigators
(Tables 1-3). Verification of these predictions according to
established biomedical standards and protocols can bridge
the gap between the best-studied SNPs within protein-coding
regions of human genes and the worst-studied regulatory
SNPs and thus may advance postgenomic predictive preven-
tive personalized medicine.
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