Next-Generation Techniques for Discovering Human Monoclonal Antibodies

Abstract

Monoclonal antibodies have found wide applications in the treatment of cancer, as well as of autoimmune, infectious, and other diseases. Several dozen new antibodies are currently undergoing different stages of clinical trials, and some of them will soon be added to the list of immunotherapeutic drugs. Most of these antibodies have been generated using hybridoma technology or a phage display. In recent years, new methods of obtaining human monoclonal antibodies have been actively developing. These methods rely on sequencing immunoglobulin genes from B lymphocytes, as well as on the creation of antibody-secreting stable B-cell lines. The term next-generation antibody-discovery platforms has already been established in the literature to refer to these approaches. Our review focuses on describing the results obtained by these methods.

Abbreviations

ELISpot:

enzyme-linked immunospot

NGS:

next-generation sequencing

VH:

variable domain of the heavy chain

VL:

variable domain of the light chain

mAb:

monoclonal antibody

SARS:

severe acute respiratory syndrome.

References

  1. 1.

    Köhler G., Milstein C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 256, 495–497.

    Article  PubMed  Google Scholar 

  2. 2.

    Green L.L. 1999. Antibody engineering via genetic engineering of the mouse: XenoMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. J. Immunol. Methods. 231, 11–23.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Frenzel A., Schirrmann T., Hust M. 2016. Phage display-derived human antibodies in clinical development and therapy. MAbs. 8, 1177–11194.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Chiu H.Y., Wang T.S., Chan C.C., et al. 2015. Risk factor analysis for the immunogenicity of adalimumab associated with decreased clinical response in Chinese patients with psoriasis. Acta Dermatol. Venereol. 95, 711–716.

    CAS  Article  Google Scholar 

  5. 5.

    van Schouwenburg P.A., Rispens T., Wolbink G.J. 2013. Immunogenicity of anti-TNF biologic therapies for rheumatoid arthritis. Nat. Rev. Rheumatol. 9, 164–172.

    Article  PubMed  Google Scholar 

  6. 6.

    Hardiman G. 2012. Next-generation antibody discovery platforms. Proc. Natl. Acad. Sci. U. S. A. 109, 18245–18246.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Lavinder J.J., Horton A.P., Georgiou G., et al. 2015. Next-generation sequencing and protein mass spectrometry for the comprehensive analysis of human cellular and serum antibody repertoires. Curr. Opin. Chem. Biol. 24, 112–120.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Galson J.D., Pollard A.J., Truck J., et al. 2014. Studying the antibody repertoire after vaccination: Practical applications. Trends Immunol. 35, 319–331.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Reddy S.T., Ge X., Miklos A.E., et al. 2010. Monoclonal antibodies isolated without screening by analyzing the variable-gene repertoire of plasma cells. Nat. Biotechnol. 28, 965–969.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Lees W.D., Shepherd A.J. 2015. Utilities for highthroughput analysis of B-cell clonal lneages. J. Immunol. Res. 2015, 323–506.

    Article  Google Scholar 

  11. 11.

    Lebedin M.Y., Turchaninova M.A., Egorov E.S., et al. 2017. High-throughput immunoglobulin sequencing data analysis with the use of unique molecular identifiers. Immunologiya. 38, 59–63.

    Google Scholar 

  12. 12.

    Turchaninova M.A., Davydov A., Britanova O.V., et al. 2016. High-quality full-length immunoglobulin profiling with unique molecular barcoding. Nat. Protoc. 11, 1599–1616.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Lu D.R., Tan Y.C., Kongpachith S., et al. 2014. Identifying functional anti-Staphylococcus aureus antibodies by sequencing antibody repertoires of patient plasmablasts. Clin. Immunol. 152, 77–89.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Wu X., Zhou T., Zhu J., Zhang B., et al. 2011. Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science. 333, 1593–1602.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Wardemann H., Yurasov S., Schaefer A., et al. 2003. Predominant autoantibody production by early human B cell precursors. Science. 301, 1374–1377.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Clargo A.M., Hudson A.R., Ndlovu W., et al. 2014. The rapid generation of recombinant functional monoclonal antibodies from individual, antigen-specific bone marrow-derived plasma cells isolated using a novel fluorescence-based method. MAbs. 6, 143–159.

    Article  PubMed  Google Scholar 

  17. 17.

    Corti D., Voss J., Gamblin S.J., Codoni G., et al. 2011. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science. 333, 850–856.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Yu X., Tsibane T., McGraw P.A., House F.S., et al. 2008. Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature. 455, 532–536.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Traggiai E., Becker S., Subbarao K., Kolesnikova L., et al. 2004. An efficient method to make human monoclonal antibodies from memory B cells: Potent neutralization of SARS coronavirus. Nat. Med. 10, 871–875.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Scheid J.F., Mouquet H., Feldhahn N., et al. 2009. Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature. 458, 636–640.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Wrammert J., Smith K., Miller J., et al. 2008. Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature. 453, 667–671.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Smith K., Garman L., Wrammert J., et al. 2009. Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen. Nat. Protoc. 4, 372–384.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Tiller T., Meffre E., Yurasov S., et al. 2008. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J. Immunol. Methods. 329, 112–124.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Liao H.X., Levesque M.C., Nagel A., et al. 2009. Highthroughput isolation of immunoglobulin genes from single human B cells and expression as monoclonal antibodies. J. Virol. Methods. 158, 171–179.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Lin Z., Chiang N.Y., Chai N., et al. 2014. In vivo antigen-driven plasmablast enrichment in combination with antigen-specific cell sorting to facilitate the isolation of rare monoclonal antibodies from human B cells. Nat. Protoc. 9, 1563–1577.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Nakamura G., Chai N., Park S., et al. 2013. An in vivo human-plasmablast enrichment technique allows rapid identification of therapeutic influenza A antibodies. Cell Host Microbe. 14, 93–103.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Tan Y.C., Blum L.K., Kongpachith S., et al. 2014. High-throughput sequencing of natively paired antibody chains provides evidence for original antigenic sin shaping the antibody response to influenza vaccination. Clin. Immunol. 151, 55–65.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    DeKosky B.J., Ippolito G.C., Deschner R.P., et al. 2013. High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire. Nat. Biotechnol. 31, 166–169.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Wine Y., Boutz D.R., Lavinder J.J., et al. 2013. Molecular deconvolution of the monoclonal antibodies that comprise the polyclonal serum response. Proc. Natl. Acad. Sci. U. S. A. 110, 2993–2998.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Cheung W.C., Beausoleil S.A., Zhang X., et al. 2012. A proteomics approach for the identification and cloning of monoclonal antibodies from serum. Nat. Biotechnol. 30, 447–452.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Aman P., Ehlin-Henriksson B., Klein G. 1984. Epstein–Barr virus susceptibility of normal human B lymphocyte populations. J. Exp. Med. 159, 208–220.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Crain M.J., Sanders S.K., Butler J.L., et al. 1989. Epstein–Barr virus preferentially induces proliferation of primed B cells. J. Immunol. 143, 1543–1548.

    CAS  PubMed  Google Scholar 

  33. 33.

    Laffly E., Sodoyer R. 2005. Monoclonal and recombinant antibodies, 30 years after. Hum. Antibodies. 14, 33–55.

    CAS  PubMed  Google Scholar 

  34. 34.

    Stahli C., Staehelin T., Miggiano V., et al. 1980. High frequencies of antigen-specific hybridomas: Dependence on immunization parameters and prediction by spleen cell analysis. J. Immunol. Methods. 32, 297–304.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Banchereau J., Bazan F., Blanchard D., et al. 1994. The CD40 antigen and its ligand. Annu. Rev. Immunol. 12, 881–922.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Banchereau J., Rousset F. 1991. Growing human B lymphocytes in the CD40 system. Nature. 353, 678–679.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    O’Nions J., Allday M.J. 2004. Proliferation and differentiation in isogenic populations of peripheral B cells activated by Epstein–Barr virus or T cell-derived mitogens. J. Gen. Virol. 85, 881–895.

    Article  PubMed  Google Scholar 

  38. 38.

    Wiesner M., Zentz C., Mayr C., et al. 2008. Conditional immortalization of human B cells by CD40 ligation. PLoS ONE. 3, e1464.

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Kwakkenbos M.J., Diehl S.A., Yasuda E., et al. 2010. Generation of stable monoclonal antibody-producing B cell receptor-positive human memory B cells by genetic programming. Nat. Med. 16, 123–128.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Kwakkenbos M.J., van Helden P.M., Beaumont T., et al. 2016. Stable long-term cultures of self-renewing B cells and their applications. Immunol. Rev. 270, 65–77.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Kwakkenbos M.J., Bakker A.Q., van Helden P.M., et al. 2014. Genetic manipulation of B cells for the isolation of rare therapeutic antibodies from the human repertoire. Methods. 65, 38–43.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Filatov.

Additional information

Original Russian Text © A.A. Lushova, M.G. Biazrova, A.G. Prilipov, G.K. Sadykova, T.A. Kopylov, A.V. Filatov, 2017, published in Molekulyarnaya Biologiya, 2017, Vol. 51, No. 6, pp. 899–906.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lushova, A.A., Biazrova, M.G., Prilipov, A.G. et al. Next-Generation Techniques for Discovering Human Monoclonal Antibodies. Mol Biol 51, 782–787 (2017). https://doi.org/10.1134/S0026893317060103

Download citation

Keywords

  • human monoclonal antibodies
  • next-generation sequencing
  • B-cell immortalization
  • immunoglobulins